Advances in Applied Energy 16 (2024) 100191

journal homepage: www.elsevier.com/locate/adapen

 ADVANCES IN
AppliedEnergy

Contents lists available at ScienceDirect

Advances in Applied Energy

Check for

Toward global rooftop PV detection with Deep Active Learning

Matthias Zech **, Hendrik-Pieter Tetens ?, Joseph Ranalli”

a German Aerospace Center (DLR), Institute of Networked Energy Systems, Carl-von-Ossietzky-StrafSe 15, Oldenburg, 26129, Germany
b penn State Hazleton, 76 University Drive, Hazleton, 18202, PA, USA

ARTICLE INFO

Dataset link: Code to run the experiments and ¢
reate plots, will be published on github once ac
cepted (Original data)

Keywords:

Deep Active Learning
PV panel detection
Machine Learning
Semantic segmentation
Remote sensing

ABSTRACT

It is crucial to know the location of rooftop PV systems to monitor the regional progress toward sustainable
societies and to ensure the integration of decentralized energy resources into the electricity grid. However,
locations of PV are often unknown, which is why a large number of studies have proposed variants of
Deep Learning to detect PV panels in remote sensing data using supervised Deep Learning. However, these
methods are based on annotating datasets and therefore often require relabeling when fine-tuned or extended
to a different region. Recent advances in Deep Active Learning offer the opportunity to significantly reduce
the number of required annotated images by intelligently selecting the images to label next based on their
informative value for the model. In this study, we compare different Deep Active Learning algorithms using
a variety of datasets from different regions and compare different model training variants. In the simulations,
the entropy-based acquisition function shows the highest performance with only 3% of the data needed in
case-imbalanced data, while remaining simple to implement. We believe that Deep Active Learning provides an
elegant solution to maintain high model accuracy while reducing annotation effort substantially. This facilitates
the development of generalizable models for worldwide rooftop PV detection.

1. Introduction
1.1. Background

Solar photovoltaics (PV) have shown unprecedented global annual
growth rates of 50% during the last decade [1] and are expected to
become the main energy supply technology in 2050, with electricity
production shares of 30 to 50% in competitive markets [2]. PV modules
are granular, meaning that identical PV panels can be combined in
various configurations, from a few PV panels used in residential appli-
cations, up to millions of PV panels for utility-scale applications. This
modularity has contributed to rapid scaling and cost reductions [1,3].
The rapid development of PV technology has largely been driven by
rooftop PV systems [4], which account for approximately 40% of the
total installed PV capacity [5]. Despite their importance, relatively little
information is available on the location and capacity of these rooftop
PV systems [6], although such information is crucial for the operation
of renewable energy-based systems. For example, it is essential for
electricity grid operators to calculate actual and predicted regional PV
inputs [7,8]. Moreover, accurate PV location data enables policymakers
to track regional progress toward sustainable energy system goals and
to design and evaluate equitable policies. Energy research also relies on
accurate data, in particular for the modeling of urban energy systems
on a community scale [9,10]. While Open Street Map data provide
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reasonable estimates [11], more advanced methods are required to
obtain accurate and updated global PV registries.

1.2. Related works

To tackle the issue of limited information about global PV sys-
tems, a large number of studies have proposed Machine Learning (ML)
techniques in combination with Remote Sensing data to detect PV
panels from above. To categorize existing approaches, we conducted
a literature review, which is summarized in Table 1. Note that the
literature search is limited to the task of detecting PV panels and thus
excludes the large research body about PV fault classification [31,49],
in which the module locations are already known.

Since 2014, a large number of different approaches have been used
to detect PV panels in satellite and aerial imagery. Early works [12,13]
were based on Support Vector Machines, while later works are mainly
driven by the latest advances in deep neural networks. This shift
toward Deep Learning is typical for the use of ML in remote sens-
ing [50]. Different Deep Learning (DL) model architectures have been
proposed such as U-Net, DeepLabV3 and recently, transformer-based
models, such as SegFormer. Furthermore, authors proposed customized
architectures for PV detection, such as PV-UNet [43], GenPV [34], or
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Table 1
Models that use Machine Learning and remote sensing data for PV panel detection.
Year Region Method Data Resolution [m] Channels Strengths
[12] 2014 Abu Dhabi SVM Google - RGB Pioneering work
[13]1 2015 Lemoore (California) SVM Aerial imagery 0.3 RGB Pioneering work
[14] 2016 Washington D.C.;San CNN Aerial imagery 0.3 RGB Pioneering work using CNNs
Fransisco;Boston
[15] 2017 - CNN Google - RGB Low quality image data
[16] 2018 Fresno (California) SegNet Aerial imagery 0.3 RGB Publication of dataset; high-resolution
[17]1 2018 United States (50 Inception-v3 Google 0.15 RGB Large-scale coverage (US)
cities)
[18]1 2019 Switzerland U-Net Aerial imagery 0.25 RGB Feasibility study
[19] 2019 China SolarNet Satellite - RGB Better performance
(FCN,EMANet)
[20]1 2020 Oldenburg (Germany) U-Net Google 0.27 RGB Uncertainty quantification
[21] 2020 Fresno (California) Crossnet (U-Net) Aerial imagery 0.3 RGB Cross learning
[22] 2021 Worldwide U-Net Satellite 10 (Sentinel-2), 1.5 12 bands Global inventory
(SPOT6/7) (Sentinel-2), RGBIR
(SPOT6/7)
[23] 2021 Netherlands TernausNet (U-Net) Aerial imagery 0.05-0.107 RGBIR Feasibility study; infrared data fusion
[24] 2021 Jiangsu (China) DeepLabv3+ Aerial;Satellite;UAV 0.1,0.3,0.8 RGB Model comparison (RefineNet, U-Net,
DeepLabv3+) Cross-Application
[25] 2021 Brazil U-Net Sentinel-2 10 RGBIR Model comparison (U-net, DeepLabv3+,
(Efficient-net-B7) Pyramid Scene Parsing Network, Feature
Pyramid Network), Backbone comparison
(EfficientNet, ResNet)
[26] 2021 Germany RetinaNet Aerial imagery 0.2 RGBIR Partially automated (through address
(Berlin;NRW;Thuringia) data)
[271 2022 NRW (Germany) DeepLabV3 Aerial imagery 0.1 RGB Tilt and azimuth derivation
[28] 2022 India U-Net Sentinel-2 10,20,60 12 bands Open dataset of solar farms in India
[29] 2022 China Random Forest Sentinel-1;Sentinel- 10;20;60 All bands, monthly VIIRS information to detect human
2;VIIRS VIIRS settlements
[30] 2022 Golmud (China) XGBoost Landsat-8 30 11 bands Local terrain features
[31] 2022 Italy;Spain;Japan Mask R-CNN UAV (infrared) Thermal images, Anomaly of the PV
plant
[32] 2022 Netherlands Random Forest Sentinel-1;Sentinel-2 10;20 12 bands Identify most important channels and
indices
[33] 2023 Piedmont (Italy) U-Net Aerial imagery 0.3 RGBIR Mono vs. Polycrystalline
[34] 2023 Heilbronn (Germany) GenPV Google 0.15;0.3;0.6 RGB Novel method(loss function)
[35] 2023 United States U-Net Aerial imagery 0.6 RGB Validation on capacity and energy
generation data
[36] 2023 Heilbronn (Germany) SegFormer Aerial imagery 0.15 RGB Constraint refinement (Color & shape
loss) Model comparison
(SegFormer;DeepLabV3+;FCN;UPerNet)
[371 2023 Regions in DeepLabv3 Bing Maps 0.1;0.2;0.3;0.8 RGB Multi-resolution training
Germany;China;France
[38] 2023 Regions in China PVNet Google 0.5;0.54;0.6 RGB Enhanced model
[39] 2023 California;Heilbronn Rooftop PV Aerial imagery 0.3;0.15 RGB Semantic Refinement Module, Feature
(Germany) Segmenter Aggregation Module, Deep Supervision
Module
[40] 2023 Switzerland Mask2Former Aerial imagery 0.1 RGB Show better performance for
Mask2Former architecture
[41] 2024 China Segment Anything Google 2 RGB Weakly-supervison by Segment Anything
Model Model
[42] 2024 Selected solar farms in Solis-Seg+DeepLab Sentinel-2 10 12 bands Neural Architecture Search
Europe
[43] 2024 Ordos (China) PV-UNet Gaofen-2;Sentinel-2 1 (Gaofen-2), RGBIR; 12 bands Robustness to different measurements,
(attention-based) 10;20;60 (Sentinel-2) integrates low-resolution and
high-resolution
[441 2024 Heilbronn (Germany) SegFormer Aerial imagery 0.15 RGB Generate artificial images for data
augmentation
[45] 2024 Germany;New- U-Net Aerial imagery 0.15;0.27;0.3;0.45 RGB Low generalizability of DL models for PV
York;France;California
[46] 2024 China;France Mask2Former Satellite, Aerial 0.1,0.2,0.3,0.8 RGB Architecture (compared against U-Net
imagery DeepLabv3+)
[471 2024 Islamabad (Pakistan) U-Net, DeepLabV3 Google 0.25 RGB Used for PV simulation for current and
future PV system
[48] 2024 Heilbronn (Germany) TransPV (U-Net, Aerial imagery 0.15 (Heilbronn); 0.2 RGB Refining loss function; better
Transformer) (France) generalizability

Legend: Google as a data source refers to using images from Google Earth, as retrieved from Google Static Maps. RGB refers to red, green and blue channels, RGBIR refers to RGB with an additional infrared channel.

TransPV [48], which modify elements of the model architecture or
tailor the loss function to detect PV systems. Given the high activity in
this research domain, and more broadly in architecture development
for semantic segmentation, it can be expected that numerous novel DL
architectures with better performance are proposed in academic liter-
ature. However, the general principle of using semantic segmentation
in a supervised learning setting for PV detection, as applied in all the
listed publications, is expected to persist.

The literature can be divided into models with a regional focus,
using aerial imagery in selected regions with image resolutions below 1
m/px, and studies with a larger spatial domain that use globally avail-
able satellite imagery [22]. Regional studies are conducted primarily
in developed and leading economies with significant PV capacity, such
as Germany, France, Switzerland, the United States, and China. The
required spatial resolution of around 0.15 to 0.3 meters [51] can only

be achieved through aerial imagery from regional airborne campaigns
or commercial satellite imagery. Publicly accessible satellites, such as
Sentinel-2 [52] and Landsat-8 [53], have resolutions that are orders
of magnitude lower than needed and therefore are only capable of
capturing utility-scale solar farms. Consequently, global PV registries
that include individual PV panels and rooftop PV systems will likely
need to be created by combining coarse satellite data with a mosaic of
regional aerial imagery.

The application of a DL model on different remote sensing datasets
from different airborne campaigns or satellites is challenging, as DL
models trained in one region are known to show poor performance
in other regions [45,54], necessitating additional fine-tuning and re-
labeling. Although efforts have been made to improve generalizability
through the use of generative AI [44] or by Feature Pyramid Net-
works [51], the ability to generalize across datasets with differing
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Fig. 1. Schematic overview of Deep Active Learning in comparison to the common practice of learning with randomly selected images.

measurement and local characteristics remains uncertain, requiring fur-
ther model finetuning on additional labeled datasets. Furthermore, PV
datasets are highly imbalanced [51], making the selection of relevant
images particularly challenging.

Deep Active Learning (DeepAL) provides a strategy to identify
model-critical images for the training of DL models. It aims to reduce
the number of labels required for training deep learning models by
selectively labeling images based on their potential to improve the
model’s performance, rather than randomly labeling uninformative im-
ages. Active Learning, the counterpart to traditional, non-batch trained
ML models, has been widely implemented in the remote sensing do-
main. For example, Active Learning for Support Vector Machines has
been evaluated for object classification in remote sensing, showing
promise to reduce the number of needed labels [55-57]. It has also been
used for object segmentation [58]. More recently, [59] showed that
DeepAL algorithms can be used effectively to greatly reduce the number
of labels needed for building segmentation. Although they illustrate
the advantage of DeepAL in the remote sensing domain, it remains
unknown how well DeepAL works on a realistic object detection dataset
that contains different regions, has small signal-to-noise ratios, and
is highly imbalanced, with many images only showing background
information, as is the case with detecting PV panels. Furthermore, it
needs to be demonstrated that DeepAL can also be used for fine-tuning
an existing model on a different dataset or extending an existing model
by an additional dataset.

1.3. Research contributions

This article contributes to the large body of academic literature on
detecting PV panels using DL models. We believe that labeling effort is
the core challenge hindering wide-scale adaption of scalable DL models
for global PV registries. As this issue can be ameliorated by using
DeepAL, we demonstrate its application as a missing step toward the
development of global PV registries. More concretely, we contribute to
the literature by investigating the following research questions:

. Can DeepAL facilitate model training to detect PV systems?

. Which acquisition function is preferable?

. Can DeepAL handle imbalances in PV data?

. How well does DeepAL work for different PV detection model
tasks (fine-tuning and joint-learning)?

A WDN -

2. Deep active learning

Training DL models requires large datasets that are annotated
through tedious labeling efforts, with time primarily spent on labeling
randomly sampled images. By randomly selecting images, the image la-
beling and model training are completely decoupled, likely resulting in

an inefficient method of labeling, e.g. providing redundant information
and potentially missing out on important information. DeepAL proposes
a more effective approach, as described in [60], by establishing a
feedback loop between the model and the labeling process as depicted
in Fig. 1. The feedback from the model aims to iteratively provide
information on which images are most valuable to annotate next by
making use of an acquisition function. To formalize, the scenario
considers an unlabeled pool U of images, out of which DeepAL aims to
iteratively sample a batch of images (B = x;, x,, ..., x;, C U’) and label
them (y,,y,, ..., ;). The labeled batch is then added to the training set
(D,,4in) and the model is retrained with this extended training dataset.
This procedure is repeated for a number of rounds until the model has
sufficient accuracy or the annotation budget is spent.

Unsurprisingly, the choice of the acquisition function within DeepAL
is crucial, leading to a large number of different proposals from acad-
emia. For this study, we investigate three promising acquisition func-
tions.

2.1. Uncertainty-based acquisition functions

Uncertainty-based querying strategies assume that showing the
model images that experience high uncertainty will provide the most
valuable information for effective model training. In case of PV systems,
this would ideally propose objects that are known to be difficult to
discriminate, such as winter gardens, greenhouses or objects orientated
in parallel lines similar to those of PV systems. Multiple different
acquisition functions have been proposed following this rationale, as
well-documented in literature [61,62]. We select two representatives
of uncertainty-based acquisition functions, described in more detail
below.

2.1.1. Entropy

Entropy-based sampling (Entropy) described in [63] refers to an ac-
quisition function that approximates the uncertainty using the Shannon
entropy [64]. This metric stems from information theory and estimates
the model confidence in its prediction [65]. It is defined as

H[ylx, Dyyginl = = Z p(y = ¢|x, Dyygiy) log p(y = ¢|X, Dyy i) @
c

with p representing the posterior label probability of the classifier for
class c¢. The conditional probability that a pixel belongs to that class
can be derived from the model’s sigmoid function in a binary classifi-
cation setting, or the model’s softmax function in a multi-class setting.
Although these outputs are uncalibrated and often overconfident [66],
they provide estimates of low-confidence (high entropy) and high-
confidence (low entropy) model predictions. The runtime to calculate
the Shannon entropy is nearly identical to running one forward pass
through the DL model, and as the activation layers are already available
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in DL model architectures, the entropy method is easy to implement and
computationally efficient. The entropy score is calculated pixel-wise,
which is why it is averaged to image-wise values as in [67].

2.1.2. Bayesian active learning by disagreement (BALD)

The second uncertainty-based acquisition function in this study is
Bayesian Active Learning by Disagreement (BALD) from [68]. This
technique aims to maximize the mutual information between model
predictions and model parameters and is formulated as

1y, @1, Dyyain] = HIYIX Dyrain] = E o, [HIVIX, @1] @

The first term H[y|x, D,,,,] expresses the entropy while the second
term expresses the expected entropy of the prediction y given x and
the model parameters w averaged over the model posterior p(w|D,,;,)-
This score increases when the model shows a large disagreement about
the respective category. In large neural networks Bayesian inference is
infeasible, which is why BALD is typically implemented using Monte
Carlo Dropout [69]. This approach uses Dropout layers with fixed
dropout rate during training and during inference time, leading to
multiple different predictions that can be seen as a proxy for Bayesian
inference [70]. In our simulation, we select eight stochastic forward
passes and a dropout rate of 0.2. The Dropout layer is implemented
between the encoder and decoder of the neural network architecture
as in [20], where it is used to obtain uncertainty estimates of PV
segmentation masks. The uncertainty is averaged using a simple sum
over all pixels, though in case of static input image sizes, averaging
and summation are identical (see Appendix A).

2.2. Core-set acquisition function

In contrast to uncertainty-based acquisition functions, diversity-
based approaches aim to find the most representative sub-dataset of
the full dataset. This assumes that to obtain best model performance, a
model has to see all the diversity inherent in the full dataset. In the case
of PV systems, this acquisition function ideally would propose objects
that are representative of the full range of plausible PV systems in dif-
ferent environments. For instance, this might mean various suburban,
urban or rural regions.

The selection of the most promising images following this approach
can be formulated as an NP-hard optimization problem, referred to
as the Core-set approach [71], making it intractable for large-scale
datasets and for usage in operational contexts. [71] propose a simpler
heuristic, the k-Center-Greedy algorithm, to obtain a solution of similar
accuracy as the original optimization problem that works as follows:
Choose a number of center points that minimize the largest distance
between a data point and its nearest center and iteratively repeat until
the batch of queried images is complete. Given that the embeddings
are used to describe the distance of images, reasonable embeddings are
crucial for Core-set efficiency. We tested multiple different embeddings
in the model architecture and chose the output from the activations
of the final convolutional layer of the encoder block in the U-Net
architecture.

3. Experimental design
3.1. Datasets

The images used in this study are the same as those used in [45],
which is a collection of six different aerial imagery datasets from
different regions in the world. More specifically, one dataset covers the
region of Northern Germany [20], two datasets are from France [72],
and three datasets come from the United States [45,73]. These datasets
are recognized for their limited generalizability, indicated by the low
model performance when the DL models are evaluated in a different
region than they were trained on [45].

Advances in Applied Energy 16 (2024) 100191

More information about the six datasets is provided in Table 2. In
total, around 100,000 images are available. The images without any PV
are referred to as negatives while those with PV panels are referred to as
positives. A notable observation across all datasets is the predominance
of negatives over positives, highlighting a strong imbalance toward neg-
ative images. This imbalance is further exacerbated when considering
the proportion of pixels depicting PV panels. In cases where exclusively
positive images are considered, less than 2% of all pixels are covered
by PV panels. When negatives are included, between 0.06% to 0.86%
of the pixels show PV panels. This means that, in the most extreme
scenario, fewer than one out of every 1000 pixels shows a PV panel.

Another interesting difference between the datasets is the different
image resolutions. The spatial resolutions are between 0.15 and 0.45
m/px showing the large spread of horizontal resolutions. In the context
of PV panels, this means that a PV panel of the same physical size
covers nine times more pixels in the FR-G dataset than in the CA-F
dataset. Using different resolutions provides the opportunity to study
the realistic case of having different measurement devices for different
regions, as typical in different airborne campaigns or satellite products.
All images were resized to the same dimension (320 by 320 pixels) to
combine the different datasets and to reduce model training time.!

Besides resolution, the datasets also differ in terms of their color
balance and regional characteristics. For this purpose, Table 2 lists
the standard deviation of the red, green, and blue channels as an
indicator of the spread of color intensities. The datasets from Germany
(DE-G) and New-York (NY-Q) show the highest variability, while the
Californian datasets show the lowest variability.

To gain a better understanding of the different datasets, Fig. 2
depicts the dataset in the feature space of a U-Net model after model
training in a 2D-reduced space by applying principal component anal-
ysis (PCA) on the 512 embeddings. The first principal component
separates the dataset into urban regions with dense population (nega-
tive values), industrial regions (around zero) and rural regions (positive
values). The NY-Q and DE-G datasets exhibit a wide range of values,
ranging from highly dense to rural regions. The French datasets (FR-I,
FR-G) display regions with lower population densities, tending toward
more rural areas, while the Californian datasets primarily represent
residential and industrial areas. Only NY-Q and DE-G have values on
the left half of the plot, where densely populated residential houses are
visible, showing the uniqueness of these two datasets.

3.2. Model training

For the model simulations in this study, we apply the same DL
model architecture, namely the U-Net model originally proposed by
[74]. This architecture has been selected due to its wide usage for PV
detection as identified in the literature review. The U-Net architecture
was originally proposed for segmentation in biomedical imaging, but
found wide adaption in other domains. The model architecture is
depicted in Fig. 3 showing the typical encoder-decoder structure of
the U-Net model. The encoder path compresses and transforms the
input from a high-resolution space to a high-dimensional feature space.
In the decoder, these features are then upsampled, concatenated with
the resolution-wise matching feature maps and convolved to halve
the number of features multiple times until the final segmentation
map is obtained. This final map has the same resolution as the inputs
and thereby allows a semantic segmentation of each image pixel. The
roughly symmetric encoder-decoder network forms a U-shape, giving
it its name.

The U-Net is trained with a batch size of 32 images using the
Adam optimizer with a learning rate of 10~*. The chosen loss function
is the dice score loss function which measures the overlap between

! Note that these dimensions are only half as detailed as in [45] making
the final model scores in [45] not comparable to the final scores in this study.
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Table 2

Datasets used in this study.
Dataset CA-F CA-S DE-G FR-G FR-1 NY-Q
Location Fresno Stockton Oldenburg France France New York

(California) (California) (Germany)

References [73] [73] [20] [72] [72] [45]
Number of training 4193 1045 1324 13304 7684 1008
images (positives)
Number of all training 26368 6016 10379 28807 17325 6336
images
Number of test images 200 (1000) 200 (1000) 200 (1000) 200 (1000) 200 (1000) 200 (1000)
(full dataset)
Share of positive pixels 0.38% 0.36% 0.95% 1.85% (0.86%) 0.61% (0.27%) 1.48% (0.23%)
(with negatives) (0.06%) (0.06%) (0.12%)
Image resolution [m/px] 0.45 0.45 0.27 0.15 0.3 0.23
o (RGB), only positives (44,35,30) (45,36,37) (61,54,51) (54,50,48) (48,42,42) (61,56,57)

Principal component 2 (10%)

Principal component 2 (10%)

Principal component 1 (54%)

NY-Q CA-F FR-I DE-G

FR-G

Fig. 2. Dataset description in the feature space. The feature space is created by running inference on the positive samples with a trained U-Net model and a subsequent PCA
(explained variance in brackets) on the U-Net model embeddings (512). The upper plots show around 1000 images of the positive images in the feature space, while below each
image represents one dot in feature space colorized by the dataset. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)

Pooling

Dropout

SIGMOTD

Fig. 3. Schematic image of the U-Net architecture used for the object segmentation in this study.
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predicted and actual segmentation masks. The encoder is based on the
resnet-18 architecture with pretrained weights from the ImageNet com-
petition [75], known to increase the performance for remote sensing
tasks [76,77]. The model is implemented using the segmentation
models library [78].

For model training, we run a sufficiently large number of rounds
until the model has converged (maximum of 215 rounds) and always
query a batch of 16 additional images. Note that the number of queried
images is different than the batch size. With these 16 additional images,
the model is retrained at each round until model convergence, which
is determined by the early stopping criterion [79]. This means that
the validation IoU is inspected and the model is stopped when it did
not improve on for three consecutive iterations. For validation data, a
subset of the training data is used (20%), but the same validation data
are used in the different model runs.

3.3. Model verification

In semantic segmentation, the main goal is the correctness of the
predicted and the segmented masks. This is measured by the overlap
between predicted A and actual ground truth masks B which can be
expressed by the Intersection over Union (IoU):

|AN B|
|AuB|’

While the IoU measures how accurately the predicted and actual
masks overlap, it cannot provide information about the completeness
and reliability of the model. Therefore, we use two additional metrics,
namely precision and recall. The precision provides information on
the reliability of the model by calculating the ratio between correctly
predicted PV panels (True Positives) and the total number of predicted
positives:

IoU(A, B) = 3)

.. True Positives
Precision = — — ()]
True Positives + False Positives

In other words, the precision measures how often the model is
correct when it makes a positive prediction. The completeness of the
model, meaning how many of the labeled pixels showing PV panels are
detected by the model, is measured by the recall. It can be calculated
by the ratio between correctly predicted PV panel covered pixels and
all pixels covered by PV panels:

True Positives
True Positives + False Negatives

Recall = ()
These three scores provide a detailed view of the model’s perfor-
mance and are commonly used in semantic segmentation.

3.4. Simulating and evaluating deep active learning

In order to demonstrate DeepAL following a human-in-the-loop
modality, as depicted in Fig. 1, we simulated the behavior of human
labeling by iteratively selecting annotated images from the labeled
datasets. From a starting point for the model, images from the complete
training set were ranked by the DeepAL acquisition function, treat-
ing each as if it were an unlabeled image. The acquisition function
predicted which of these images would provide the most information
to the model. While in an operational setting, these images would be
shown to an annotator, the availability of labeled datasets allowed us
to directly access the labeled masks for these images. The model was
then retrained with the inclusion of these images and the process was
repeated.

The effectiveness of DeepAL is evaluated based on first training
a baseline model on randomly sampled images at each acquisition
round. Comparing the baseline model performance at each training
step against the performance of a model trained with a more so-
phisticated acquisition function helps us to determine whether images
intelligently selected by DeepAL are more valuable than those chosen
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Fig. 4. Performance for the controlled study only using positive samples. The min-max
bands and the median are constructed using three different seeds.

at random. This approach is commonly applied in the Active Learn-
ing literature [59,69]. As a second benchmark, we train the models
on the entire annotated data to obtain an estimate of the DeepAL’s
performance compared to a model with access to the full dataset. The
comparison of the final DeepAL’s model performance with the score
using the full dataset indicates whether DeepAL can reach the same
model performance with less data.

3.5. Computational implementation

The computational study is implemented using the snakemake
library [80] as a reproducible workflow. The simulations are executed
on a GPU cluster with five GPUs (2x Tesla P100, 2x Tesla V100 and
1x Tesla A40). Each simulation is repeated for three different seeds to
estimate the sensitivity to randomness. The different simulations are
explained in the results section for the sake of clarity.

4. Results
4.1. Choosing the acquisition functions

4.1.1. Performance on positive images

As a first step, we consider only positive images from all different
locations to evaluate the performance of the three acquisition func-
tions (BALD, Entropy and Core-set). The results of the simulations are
depicted in Fig. 4. Between the acquisition functions, Core-set shows
the worst performance, with no significant improvements over random
sampling. This makes it ineffective for the choice of an acquisition
function in the context of detecting PV panels.

The uncertainty-based acquisition functions (BALD and Entropy)
outperform Core-set and random sampling. This is evident by the higher
test IoUs in the final iterations. As the final test IoUs are close to
the baseline model, the uncertainty-based methods show that they
can reach the model score of the model trained on the full dataset.
This is important for practitioners, as it shows that not only DeepAL
is more efficient in selecting appropriate images, but these images
contain enough valuable information that the model can achieve the
full model performance. In addition to better final scores, uncertainty-
based acquisition functions can reach higher accuracy with many fewer
images than random sampling. In numbers, both BALD and Entropy can
reach test IoUs up to 0.6 with only 6% of the images while randomly
sampled images reach only 0.5 with the same amount of images.
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4.1.2. Insights from queried images

To better understand how the acquisition functions differ, we in-
vestigate which images they queried during the first two rounds, as
depicted in Fig. 5. The randomly selected images reflect the image
diversity in the datasets with respect to spatial resolution, color con-
trast, topographic differences, and PV panel types. Furthermore, they
show multiple images of urban regions with typical residential houses.
This can be explained by considering that the dataset composition has
a strong focus on suburban regions (DE-G, NY-G, CA-F and CA-S) or
in the case of FR-I and FR-G, is based on known PV locations [72].
Similar to random sampling, Core-set shows a diverse set of images such
as suburban, industrial buildings and agricultural fields. In contrast to
Core-set, the uncertainty-based acquisition functions (Entropy, BALD)
query more homogeneous images with a special emphasis on agricul-
tural structures. This is remarkable, as there are only a few images of
agriculture in the datasets, especially in the positive samples that need
to show at least one PV panel by definition. A plausible explanation
for this focus is that the geometrical structure of agricultural fields,
which are organized in parallel lines, leads the model to exhibit high
uncertainty in discriminating between these rows and rows present in
large-scale PV systems. In addition to fields, Entropy and BALD query
regions with large-scale PV systems which can be explained by the
aggregation within the acquisition function, which favors images with
large areas of high uncertainty.

As the full dataset is a collection of different locations, we can
investigate which sources the acquisition functions query from during
the different rounds, as depicted in the first row of Fig. 6. Note that
by comparing the final share with the shares of random sampling,
over- and undersampling of a dataset can be recognized. Based on the
cumulative number, the Core-set approach significantly overrepresents
the NY-Q and DE-G datasets, especially during the early rounds. Inter-
estingly, these two are also the two datasets with the largest spread
of RGB values (Table 2). In the second row of Fig. 6 the distribution
of queried samples is depicted in the feature space derived from the
U-Net model embeddings. The majority of images queried from the
uncertainty-based methods stem from the region where the first princi-
pal component is close to zero. In this region, there is the overlap of the
different datasets with a large variety of plausible image realizations
such as industrial buildings, regions with rural regions and images with
image-contrast such as the FR-G images.

Although the distributions of the uncertainty-based methods look
similar and are similar to random sampling, the Core-Set approach
shows a large oversampling of the high-contrast images on negative
values of the first principal component where only the NY-Q and
DE-G datasets are present. By contrast, low contrast images, such as
rural regions with larger values for the first principal component, are
not considered during the querying. A plausible explanation for this
overrepresentation is that in the early iterations, the embeddings from
the neural network are not expressive enough to be able to create
differences between low-contrast images. As Core-set builds clusters
based on the diversity of the embeddings, a high-diversity dataset may
also lead to more clusters compared to other datasets, and thus finally
to more querying. In contrast, more homogeneous datasets (CA-F, CA-S,
FR-G and FR-I) with smaller color palettes lead to a smaller spread of
embeddings and thus to fewer clusters. When thinking about impacts on
model performance, the opposite is true, as objects from low-contrast
images are harder to discriminate against the background than high-
contrast images. This raises some questions about the usefulness of the
Core-Set approach for the sake of PV detection.

The uncertainty-based acquisition functions in Fig. 6 show fun-
damentally different behavior. In the early rounds (< 500 images),
the model prioritizes querying from datasets with highest spatial res-
olutions (FR-G, FR-I and NY-Q). As the training progresses, Entropy
increasingly queries from low-resolution datasets (CA-F and CA-S).
This behavior can be attributed to the model’s training state. In the
initial iterations, the model struggles to discriminate PV panels from

Advances in Applied Energy 16 (2024) 100191

the background and therefore focuses on large-scale PV systems, which
also generate a large uncertainty due to their large covered area. Once
the model is able to easily identify these, it shifts its focus to more
challenging datasets with lower resolution. Furthermore, BALD and
Entropy sample very similarly at the different rounds, corresponding to
the similarity in their uncertainty-based approaches. More specifically,
of the first 1500 images queried by Entropy and BALD, there is an
overlap of 37% of sampled images, while Core-set sampling would
result in only 25% and random sampling in only 23% of overlap.

4.1.3. Choosing a suitable acquisition function

Table 3 summarizes the findings of the above analysis and the
characteristics of the different acquisition functions. In addition to per-
formance, we include storage requirements and computational expense
to evaluate the acquisition function’s ability to scale to large-scale
datasets, as needed for a global PV registry on submeter resolution.
Storage requirements determine whether very large datasets can be
evaluated, while computational expenses determine the time a human-
in-the-loop annotator, such as described in [59], would need to wait
until new images are proposed. As remote sensing can sample from a
nearly unlimited set of geographical regions and sensors, the time spent
to evaluate the acquisition function could easily become the bottleneck
in an operational system.

With respect to the simplicity of the implementation, Entropy does
not require a specific model architecture, as it uses the already available
probability outputs from the sigmoid or softmax layer. By contrast,
BALD is based on Monte Carlo Dropout and requires Dropout layers
to obtain uncertainty estimates. While Deep Ensembles could also be
applied in BALD for networks without Dropout layers [81], this requires
the training of multiple DL models and increases the computation time
during inference. In the case of Core-set, the DL model is required to
have extractable, meaningful embeddings. These embeddings are criti-
cal, because they determine the feature representation, but fortunately,
embeddings are already available in the model architecture. Entropy
has the lowest computational expenses, as only one forward pass over
the unlabeled pool is needed, and the calculation of the Shannon
entropy is not a new operation, as it is also performed during model
inference. The image scores do not need to be kept in memory, allowing
extensive parallelization with low storage requirements. In the case of
BALD, the computational costs are multiples of the entropy method,
scaling as a function of the number of desired uncertainty estimates.
Core-set needs to calculate the distance matrix over all embeddings,
resulting in large computational and memory expenses.

In terms of performance as an acquisition function, uncertainty-
based methods outperform the diversity-based method by a large mar-
gin for the case of detecting PV panels. A plausible explanation for this
can be derived from the characteristics of the dataset used in this study.
In [67], different DeepAL algorithms are benchmarked on three differ-
ent datasets that are classified into diverse and redundant datasets. In
the case of redundant datasets, uncertainty-based methods often pro-
pose highly correlated batches that hinder the learning of reasonable
models, which is also known as mode collapse [67]. Diverse datasets do
not suffer from local clusters, which leads to uncertainty-based acqui-
sition functions outperforming their diversity-based counterparts [67].
Given that the PV datasets used here cover wide geographical areas
characterized by different climatic zones, vegetation, and different sen-
sors, we argue that the PV segmentation task implemented on these can
be considered to be a diverse dataset. This is also consistent with the
results in [59] for the case of building segmentation, where, although
only uncertainty-based methods have been compared, these show large
performance improvements over random sampling.

Given the high performance of Entropy, its easy implementation
within the existing neural network architecture and the low computa-
tional and storage costs (Table 3), we suggest Entropy as the preferable
method of those tested, and focus on Entropy for the remainder of this
study.
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Table 3
Comparison of acquisition functions. Favorable properties are printed in bold.
Entropy BALD Core-set
Acquisition function type Uncertainty Uncertainty Diversity
Improvement High High Medium
Simplicity of implementation High Medium Low
Need to change NN architecture no eventually no
Computational requirements Low Medium High
Storage requirements Low Medium High
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Fig. 7. Performance of DeepAL for imbalanced datasets. The min-max bands and the median are constructed using three different seeds.

4.2. Imbalanced data

4.2.1. Performance

The simulations thus far assume that the unlabeled pool only con-
tains positive images, meaning that each image contains at least one
PV system. However, this approach does not fully encapsulate the
challenges inherent in a realistic PV segmentation dataset that spans
over wide regions and would not be expected to show a PV system
in most images. To address this limitation and to provide a more
realistic evaluation, we investigate the effect of imbalanced datasets
by extending the datasets from Section 4.1.1 by their negative samples
(66674 additional images, leading to a share of 70% negative images).
This also applies to the test dataset which is extended by 800 negative
images for each region (4800 in total).

Fig. 7 shows the performance of Entropy compared to random
sampling. Interestingly, the performance disparity between random
sampling and Entropy is stronger than when only positive samples are
considered (Section 4.1.1). This was evident from the onset, as Entropy
largely outperforms random sampling after around 100 queried images,
and then consistently outperforms random sampling as additional im-
ages are added. In addition to scoring much better during the initial
iterations, Entropy converges to much higher performance levels than
random sampling. In numbers, Entropy can reach a test IoU of 0.55
while random sampling only reaches values between 0.25 and 0.3,

around 50% lower. Remarkably, the final IoU scores of Entropy are
equal to the model trained on the full dataset, which means that by
using Entropy, only 3% of the total data are needed. This number
directly corresponds to the number of images that a labeler would need
to inspect, meaning that an annotator would need to observe 97% fewer
images by using Entropy.

The IoU only provides information about the overlap between the
estimated and actual masks. To obtain more information about the
model performance, Fig. 7 shows the pixel-wise precision and recall val-
ues as a measure of how complete (recall) and reliable (precision) the
model predictions are. The precision curve illustrates large precision
values for Entropy and random sampling, even in the early iterations.
Entropy plateaus quickly after less than 500 iterations (0.8) at the
value of the baseline while random sampling only slowly converges
to the final model score over the 3000 sampled images. The recall
curves are much flatter than the precision curves. The final model
scores are only reached at the simulation end of around 3000 images
for Entropy, while random sampling never reaches the final score.
On the contrary, the final recall score of randomly sampled images is
50% lower than achieved by Entropy. Furthermore, the recall curve is
highly similar to the IoU curves for both Entropy and random sampling.
This precision-recall relationship indicates that the model is highly
conservative, meaning that it only makes predictions when it is highly
certain about them (high precision). This leads to a smaller number of
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predictions, making the results incomplete (low recall) during the early
iterations. The model needs to incorporate a diverse set of PV systems in
its training data to improve performance. Entropy’s approach actively
provides a diverse set of different PV systems that allows the model to
improve quickly, while for random sampling, many more images are
needed to obtain a sufficient set of diverse PV systems.

Another interesting observation in Fig. 7 is the low spread between
the different model runs in the case of Entropy. Therefore, we can
conclude that Entropy reliably leads to the same model performance
during different model runs. This is crucial, as it means that the modeler
can trust the result of individual training runs when using Entropy in
a DeepAL approach.

4.2.2. Insights from queried images

Analogous to the analysis in Section 4.1, we investigated the types
of images sampled during the DeepAL rounds but when negative images
are included, as shown in Fig. 8. During the early rounds, Entropy
oversamples the FR-G dataset, similar to observations from the case of
positive images. During later rounds, the ratio between the different
datasets approaches the random population. This implies that Entropy
is able to adapt by shifting its focus from the difficult images of
the French datasets to other datasets in later stages. Around 90%
of the performance improvements are achieved within the first 1000
additional images (Fig. 7), which aligns with the rounds when most
sampling is from the FR-G dataset. This shows the importance of
including the very difficult cases in the early rounds. In later rounds,
a more diverse querying leads to a well-balanced performance over
the different regions. In addition to the different datasets sampled
from, Fig. 8 illustrates the balance between positive and full dataset.
An oversampling of positive images is noticeable. Random sampling
would be expected to result in a ratio of about 40% positive images,
while Entropy instead shows 60% positive split. Interestingly, primarily
negative samples are queried during the early iterations, while after
around 100 iterations, an increasing number of positive images are
sampled. The oversampling of positive samples shows that after only
a few rounds of queried images, the model is able to propose images
that are more likely to show PV panels than in the case of randomly
sampled images.
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The images with the highest uncertainty scores using Entropy are
depicted in Fig. 9. These allow us to investigate how the model uncer-
tainty changes over the course of the model training for both positive
images and the full dataset. The first images contain particularly large-
scale structures meaning large-scale PV systems (P1), agricultural fields
(P2, P3, F1 and F2) and measurement error (F3). As discussed with the
positive-only datasets in Section 4.1.1, these large-scale structures lead
to a high value of aggregated uncertainty. Furthermore, these images
show that parallel geometries similar to PV systems create large model
uncertainty during the early rounds. This also applies to parking lots
(P4, F4 and F8) with parallel-oriented cars, and train railways (F7).

Interestingly, the images with the highest uncertainty often do not
show any PV panels, or there is only a PV system close to the object by
coincidence (e.g. the primarily agricultural areas in P2 and P3), that
leads to an inclusion of these images in the training dataset. This is
crucial as it shows the importance of including these negative images
to train a robust DL model. Furthermore, in case of the imbalanced
data, the DeepAL method provides images, even at early iterations, that
are also non-trivial to label for untrained human labelers. For example,
this can be seen in selected images with low contrast differences be-
tween PV panel and background (P5). This shows that the uncertainty
estimates from a model with a small training dataset and only a few
training iterations can already query highly uncertain images. It is
interesting that large-scale objects can still be challenging for the model
even when it already shows reasonable detection skills. For instance,
this applies for images 1400 to 1600, when the model is close to its
final model IoU (Fig. 7), but negative images such as a large-scale
agricultural field (F10) are still queried. This highlights the crucial
importance of including negative samples to train robust segmentation
models, and that Entropy is able to detect these negative samples.
This is consistent with the fact that around 40% of images sampled
are negative samples, even when the model has reached relatively
sophisticated IoU scores at 1000 images.

4.3. Application across different PV detection models

4.3.1. Different PV detection models

Academic studies mainly assume that DL models are trained from
scratch, as investigated so far in this study. However, a PV detection
model applied in an operational context needs to be frequently updated
to extend the spatial domain of an existing model, or to account for
updated measurement sensors. This is a crucial difference, as it is
known that neural networks often perform poorly under spatial domain
shifts for the detection of PV panels [45]. As a last section in this study,
our objective is to evaluate the performance of DeepAL in the context
of different PV model operational variants.

Fig. 10 depicts two other training variants, inspired by [82], besides
training a model from scratch. Fine-tuning refers to the task of adapt-
ing an existing model, which was trained from scratch, to a different
task without utilizing the data from the initial task. A plausible scenario
for fine-tuning is the development of a specialized model for a region
or the update of a model to a new generation of a dataset. Fine-tuning
a model requires fewer data than training a model from scratch, which
makes fine-tuned models highly applicable in remote sensing [83] and
in PV detection [54]. Joint-Learning is similar to fine-tuning, as it also
transfers an existing model to a novel task with updated labeled data,
but it keeps the training data from the initial task. The intent is that
the model should perform well for both the original and novel tasks,
leading to a more sophisticated general model [82]. This is the scenario
we consider for the development of a global PV inventory, in which a
model might be iteratively extended by dataset or region.

In the following, we investigate the performance of Entropy for
fine-tuning and joint-learning approaches. For the sake of clarity, we
only make the comparisons using the full datasets that include nega-
tive samples. Further, we merge the datasets by location and dataset
similarity from six to three, leading to a French dataset (FR: FR-G,
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Fig. 9. Image with highest uncertainty for the first 50 queried rounds (first image entry of the respective batch) for Entropy. Annotated images with a red border and captions
are mentioned in the main text. The annotations at the y-axis of the first image in each row describe how many images are represented by the respective rows. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

FR-I), a Californian dataset (CA: CA-F, CA-S) and a German-American
dataset (DENY: NY-Q, DE-G). For instance, this means that for the case
of fine-tuning an existing model from France to California would result
in fine-tuning an existing model trained on the full French dataset with
the full Californian dataset. As previously, we train a model with the
full dataset as a baseline for each location.

4.3.2. Performance

Fig. 11 shows the performance for the different remote sensing
tasks. The rows indicate the datasets on which the base model is
trained, while the columns represent the datasets used for fine-tuning
or joint-learning. Similarly to training from scratch, Entropy shows
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much better performance than random sampling for both fine-tuning
and joint-learning. Likewise, most improvements occur in early itera-
tions, with fewer than 1000 images. In case of joint-learning with the
additional CA dataset, the DeepAL model very quickly reaches the final
performance level, while random sampling struggles to reach equal per-
formance to the baseline. This shows that Entropy is able to select the
difficult images from early on. In all cases, the model performs similarly
to the baseline model, with some simulations even exhibiting higher
test IoU scores. Conversely, random sampling performance plateaus at
low test IoU scores for some cases (e.g. joint-learning DENY-FR/FR-
DENY). These simulations show that Entropy not only works well when
models are trained from scratch, but also when transferred to other
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model training variants. This makes it highly attractive for large-scale
PV detection models.

5. Discussion

In this study, we demonstrate that DeepAL is highly promising for
facilitating the training of supervised DL models for PV panel detection,
by improving data efficiency and effectiveness. Through DeepAL, the
number of labeled images required can be significantly reduced, as
shown in several simulations. In the most realistic scenario, where there
is no prior knowledge of whether an image contains a PV system, only
3% of the images are needed to achieve performance comparable to
fully labeled datasets.

Beyond the considerable reduction in annotation effort, DeepAL
provides reliable feedback to annotators. This is reflected by the min-
imal sensitivity of test IoUs to different model simulations and the
nearly monotonically increasing performance trend as more images are
annotated. For the simulations conducted, the performance of models
trained with DeepAL plateaus after around 1000 to 1500 images, which
represents a moderate labeling effort. We also show that DeepAL excels
in the context of fine-tuning and joint-learning with novel datasets.
When additional datasets contain limited new information, DeepAL can
filter relevant images early, making it highly attractive for developing
tailored and generalizable PV detection models. Further research is
needed to determine whether DeepAL can similarly reduce labeling
effort in larger-scale models, such as those with more than a million
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positive images. Nevertheless, the underlying mechanisms of DeepAL,
as proposed in this study, should remain independent of the size of the
model.

Additionally, we show that the choice of the acquisition function
is crucial in DeepAL, as it determines the value of labeling an image
for model training. Our results indicate that uncertainty-based meth-
ods outperform the investigated diversity-based method (Core-set) for
segmenting PV panels. By examining the first two batches queried by
the acquisition function and the sampling in the model feature space,
we observe that Core-set tends to oversample from datasets with more
information, which are not necessarily critical for improving model
performance. In contrast, uncertainty-based methods excel at identify-
ing challenging, low-contrast images, where PV panels are harder to
distinguish from the background, early in the process. This is likely due
to the characteristics of the aerial PV datasets, a condition under which
uncertainty-based strategies outperform batch-based diversity sampling
methods [67]. Our findings align with previous work in remote sensing,
where uncertainty-based methods are shown to be highly effective [59].
Among these methods, Entropy stands out as the simplest to implement,
requiring the least storage and computational resources, making it
the most efficient method without sacrificing performance. Given that
Entropy is linked to model uncertainty, a potential avenue for future
research could be exploring how this uncertainty might also indicate
when model training should stop or when retraining is necessary,
further streamlining the training process.
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In this study, we used a single DL model architecture, the U-
Net architecture, to maintain comprehensibility. Therefore, a plausible
question is whether DeepAL is also effective for different DL archi-
tectures. We repeated some experiments with the SegFormer [84]
architecture, a modern transformer-based architecture with the results
explained in Appendix B. Interestingly, for the case study of train-
ing from scratch with imbalanced data, the effectiveness of DeepAL
was identical for both the U-Net and SegFormer architectures. The
SegFormer achieved slightly higher test IoUs, likely due to its more so-
phisticated architecture, consistent with findings in the literature [36].
Similar observations were made for the case of joint-learning (see
Appendix B). This confirms that DeepAL is at least effective for different
DL model architectures, but with the caveat that a comprehensive study
across all possible architectures was not feasible here.

An important consideration in the existing literature is whether, for
large-scale model deployments, it is necessary to first classify relevant
image regions before applying object segmentation as in [27,85,86].
The comparisons of performance on positive-only and full datasets
demonstrate that DeepAL works for semantic segmentation with or
without the need for initial classification. Its success at preferentially
sampling positives in the highly imbalanced data for the full dataset
cases indicates that it is implicitly capable of proposing which images
show a PV panel. Furthermore, we believe that the results of this study
support the idea that segmentation on the datasets with negative sam-
ples increases the segmentation accuracy, as the contextual information
from similar-looking objects is also relevant for the segmentation of PV
panels. However, this needs further academic research. For the sake of
this study, it should be noted that the effectiveness of DeepAL does not
rely on this question, the same algorithms could be applied as well for
classification tasks.

Lastly, the strong separation of the different datasets in the feature
space, as depicted in Fig. 2, shows that the inclusion of different
datasets is highly important, not only in terms of their spatial resolu-
tion, but also in terms of their dataset characteristics. This is noticeable,
as ignoring the DE-G and NY-Q dataset would not result in any images
from the left-hand side of Fig. 2, despite there being datasets with a
lower or higher spatial resolution. An open question remains whether
generalizable models are achievable with extremely large datasets and
how many different datasets would be required to achieve this. In prin-
ciple, the framework of DeepAL can help in this regard by identifying
critical datasets.

6. Conclusion

In this study, we demonstrate that Deep Active Learning can reliably
reduce the labeling effort to reach equal or better model performance
for PV segmentation. We showed that this applies to the case of using
only positive images, the case of highly-imbalanced data, and for the
model training variants of fine-tuning and joint-learning. We have
identified Entropy-based sampling as the most favorable acquisition
function for the case of PV detection. As this study simulated a human-
in-the-loop setting, in which Deep Active Learning proposes relevant
images to a human annotator in an iterative setting, the next step is
to develop a software that implements this modality in an operational
setting. Therefore, this article provides the groundwork for the devel-
opment of a computational implementation toward the detection of
global PV systems with frequent update times, and considering both
utility-scale and rooftop-scale PV systems.
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Appendix A. Indifference of summation or averaging of pixels in
BALD algorithm

Assuming two images (x, y) with uncertainty estimates for each
pixel x;,y; which are provided by Monte Carlo Dropout. Let the un-
certainty estimates for each pixel of image y be larger than for image
x, it follows that

x y
Z,n X < 27 Vi
X

p P (A1)

Given this inequality and that both images have the same number
of pixels (n¥ = n*), the inequality can be reformulated to

n* n on n
i X X Vi ont=w
nx n 7 7

(A.2)

which shows that summation and averaging are equivalent within the
BALD method.

Appendix B. DeepAL for a transformer-based model architecture

To investigate whether DeepAL works for different neural net-
work architectures, we evaluated DeepAL on the SegFormer model
architecture, which is based on a transformer.

Fig. B.12 illustrates that by using 1% of the data, DeepAL is already
capable of reaching 0.5 in contrast to 0.3 for Random Sampling. Note
that it takes more data to train the transformer, as it has not stopped
training using the same number of additional images. This is possibly
due to the more complex model architecture.

In Fig. B.13, DeepAL is tested on the SegFormer architecture for the
case of joint-learning. As before, the results are highly similar to the
U-Net model in Fig. 10. Thus, we conclude that the performance of
DeepAL is not strongly dependent on the model architecture.
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