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Abstract  —  This study investigated the bias in modeled 

generation for plants with a level of ac overbuild, that is greater 
aggregate inverter rated capacity than the plant’s grid export 
limit. The bias was simulated using operational data from two 
utility scale plants (20 MW and 200 MW). We found daily biases 
as high as 5% for a single variable day, while clear days 
experienced virtually no bias. Annual bias for the plants tested is 
estimated between 0.3-0.7%. In the annual case, the larger 200 
MW plant was observed to have a lower bias for comparable 
overbuilding ratios, which we attribute to the larger inverter 
footprints for this plant. The use of operational data proved 
somewhat limiting, as it prevented a fully parameterized 
investigation of the issues. Further study is warranted to evaluate 
these effects on plants with different sizes and subject to different 
climatological conditions. 

I. INTRODUCTION 

Developers and owners of photovoltaic (PV) plants rely on 

data and models to monitor and predict the operation of their 

facilities. The ability to accurately represent plant production is 

crucial, as greater uncertainty in models leads to more 

challenges assessing risk. Research efforts on solar plant 

modeling aim to improve the ability of models to translate data 

to plant generation estimates to increase confidence in results 

and to facilitate optimal decision making.  

Issues addressed in the literature often stem from the 

mismatch between the resolutions of input data and the 

continuous nature of plant operation. For example, studies have 

developed corrections for subhourly clipping mismatch, which 

arises when hourly irradiance data does not accurately represent 

instantaneous high irradiance events that lead to exceedance of 

inverter capacity [1], [2], [3]. These temporal mismatch effects 

cause underestimation of clipping loss (i.e. overestimation of 

plant generation). Typical satellite-derived input data may have 

resolutions of 15, 30 or 60 minutes [1], [2], which is not 

sufficient to reflect the occurrence of cloud-edge-enhancement 

or other transient events during periods of high irradiance 

variability. The correction factors for temporal bias described 

by the literature for practical cases are typically 1-2% percent 

of annual energy. 

In addition to temporal mismatch, mismatches also occur due 

to differences in spatial resolution. Data acquired from a 

measurement station represent the irradiance at the scale of the 

sensor (essentially a point, relative to the large spatial scale of 

a plant). Using a small sensor to model spatially distributed 

generation has the potential to lead to overprediction of the 

losses (underprediction of generation) due to the fact that 

localized sensor measurements are unable to represent the 

degree to which spatial aggregation actually reduces 

variability[4]. Prior investigations have attempted to use 

models of spatial variability to account for the bias introduced 

by these effects [5]. As in the temporal mismatch case, the 

potential exists for the degree of overbuilding to produce 

variation in results, though in this case, the issue arises with the 

potential for ac overbuilding (i.e. the cumulative sum of all 

inverter capacities exceeds the plant’s grid export capacity).  

This study investigates these spatial scale mismatch effects 

by considering the difference between inverter-level and plant-

level generation, using data from an operating PV plant.  

II. METHODOLOGY 

We investigated one year (calendar year 2022) of inverter 

power data from two operational PV plants, both in the United 

States. One was a 20-MW with 25 inverters rated at 800 kW 

each, and the second a 200-MW plant with 112 inverters rated 

around 1800 kW. The 20 MW plant is relatively small 

compared to many plants being built today, which are 

frequently 200 MW or larger [13]. Data from the 20 MW plant 

is not publicly available, but was used in prior work by the 

authors [6]. The 200 MW plant is publicly available from the 

American-Made Solar Data Bounty Prize dataset (identifier 

7333) [7]. Data for both plants corresponds to the 2022 calendar 

year.  

In both cases, data consist of time series of generated power 

production for each of the inverters within the plant, measured 

in kilowatts. The sampling of the acquired data was irregular 

due to methodologies designed to save data storage space, with 

recordings occurring only when a minimum threshold of 

change was exceeded, but with a shortest sample interval of 10 

seconds. For the purpose of this study, data were interpolated 

to produce a consistent 10-second resolution time series for 

each inverter.  

A. Quality Control 

The data were filtered using a preliminary quality control 

workflow, utilizing the pvanalytics python package [8] and 

based upon their example PV Fleets pipeline [9].  



 

 

First, each individual inverter time series was masked to 

remove erroneous data. Negative values and low generation 

(less than about 6% of rated inverter power, 50 kW and 125 kW 

respectively) periods were removed, along with those occurring 

overnight. Stale data was removed using a 50-point rolling 

window. Daily and hourly periods with a mean less than 10% 

of the annual mean were removed. Finally, the pvanalytics 

zscore function was used to remove outliers on a statistical 

basis. After these quality control checks, inverter data was 

removed for whole hours during which an inverter failed 

quality control for any part of that hour. Following the inverter-

level quality control, a plant-level quality check was applied, 

and any remaining hour periods during which fewer inverters 

than a threshold (40%, or 10 inverters and 45 inverters for the 

20 MW and 200 MW respective plants) were removed.  

Normalization was applied to the remaining data such that all 

inverters were scaled to have a common upper bound value (in 

this case, the same 95th percentile of generation) for each day 

of measurements. While the inverters all had approximately 

equal capacity, this step ensured that any variations in 

individual inverter performance throughout the year were 

eliminated.  

B. Representing Spatially Distribution Impacts 

We represented the impact of spatial variability on plant-

level clipping by comparing the daily energy produced by the 

plant in two configurations, one where clipping occurred on the 

inverters and one where clipping occurred only at the plant 

level.  

Power for configuration A, including the effects of spatial 

smoothing, was simulated by performing clipping at the plant 

level. We summed the measured power outputs of all inverters, 

linearly scaling up to account for any inverters with invalid 

data. The clipping was applied to this aggregate signal. The 

daily energy, 𝐸𝐴 , for day j was obtained by integrating the 

power over the course of the day. 

Configuration B was intended to represent data that was not 

subject to spatial smoothing. Thus, the power for each 

individual inverter i was clipped at a level corresponding to 

1/25th or 1/112th of the overall plant level (i.e. the inverse 

number of inverters for that plant). As in the case of 

configuration A, the power from each clipped inverter was 

summed and the result was integrated over the day to yield the 

daily energy, 𝐸𝐵 .  

Discrepancies between the energy production under 

configurations A and B represent the degree to which spatial 

variability in the generation results in differential response to 

clipping. We represent this as bias as the percent difference 

between 𝐸𝐴 and 𝐸𝐵 .  Ideally, since configuration A represents 

the aggregate of the individual inverters, under conditions 

where no inverter clipping occurs, we expect the bias between 

𝐸𝐴 and 𝐸𝐵  across all inverters to be zero. On the other hand, a 

positive value for the bias demonstrates the degree to which a 

plant with ac overbuild experiences higher generation by virtue 

of allowing individual inverters to exceed their share of the 

plant’s generation on a transient basis.  

 𝑏𝑖𝑎𝑠 =
𝐸𝐴  − 𝐸𝐵

𝐸𝐴
 (1) 

Clipping was simulated by applying an artificial maximum 

value to the instantaneous values of the individual time series 

𝑃𝑖(𝑡) or the aggregate ∑ 𝑃𝑖(𝑡)𝑛
𝑖=1  for calculation of EB and 

EA respectively. This approach is conceptually similar to the 

artificial clipping applied to inverter-level data in [10] to 

explore subhourly inverter clipping and related phenomena. 

When clipping is introduced here, the magnitude of the bias can 

be interpreted to understand the spatial aggregation effects. A 

positive bias would indicate that the output from the plant is 

higher when clipping the aggregated signal than when clipping 

the individual inverter signals and is indicative of smoothing of 

the aggregate time series due to spatial variability. Note that this 

bias impact is opposite from that seen in some work related to 

inverter-level clipping due to temporal mismatch, such as [3] 

and [10], where a positive bias implies the plant’s 

underperformance relative to the higher resolution case.  

During time periods where the plant is subject to intermittent 

clouds, while a single scaled inverter experiencing clear sky 

might alone exceed its proportional share of the plant 

generation at any given time, which would result in the inverter 

signal being clipped without any ac overbuild. However, it is 

unlikely all inverters experience the clear sky simultaneously. 

Thus, when aggregating the plant together, the amplitude or 

aggregate fluctuations are likely to be less extreme [4] implying 

that a higher mean could be achieved without significantly 

increasing the probability of clipping, resulting in a higher daily 

ratio of energy production.  

 
Fig. 1. Time series for the intermittent day for the 20 MW plant. 

Colored lines show individual inverters, black line shows the mean. 

III. RESULTS & DISCUSSION 

We initially investigated the impacts during two days for 

each plant, one low-variability clear day and a high-variability 



 

 

day experiencing intermittent cloudiness (example shown in 

Fig. 1). We computed the bias as a function of plant clipping 

level for each of these days, shown in Fig. 2 for both plants. We 

assessed the variability using the variability score [11]. 

Variability score was calculated as the median (across 

inverters) daily variability score based on the individual 

inverter time series, with the inverters scaled to a max value of 

1000 kW for consistency in comparison. For clear days, 

variability scores were 0.3 and 0.1 for the 20MW and 200MW 

plant respectively. For the variable days represented here, the 

scores were 7.3 and 6.0 for their respective plants.  

For both plants, the clear day bias is very low, and exhibits 

very little variation with clipping level. This is consistent with 

the hypothesis that under clear conditions there is not a 

significant influence of spatial variability that could lead to 

mismatch between clipping individual inverters and the plant as 

a whole.  

Conversely, for the days with high variability, variation in the 

bias is observed. A maximum bias of around 2.5% occurred for 

the 20 MW plant at an overbuild clipping ratio of around 1.4. 

The 200 MW plant observed a higher maximum (around 5.0%) 

around the same overbuild ratio. Both of these biases imply that 

when averaging over the plant, there is sufficient lag between 

cloud shadows passing over different inverter footprints to 

reduce the incidence of clipping when aggregating inverter 

signals into the plant output.   

Fig. 3 shows a similar visualization on an annual basis for 

these plants and year of data combination. For the 20 MW plant, 

the annualized bias is seen as a maximum of around 0.7% with 

a relatively high ac overbuild ratio of 1.6. The larger plant 

exhibited a maximum around 0.3% around the 1.6 overbuild, 

with an additional spike of similar magnitude around an 

overbuild of 2.5.  

III. DISCUSSION & CONCLUSIONS 

In both the cases of individual variable days and annual 

generation, biases were observed that indicate ac overbuild is 

capable of leading to increased generation as compared to 

matching inverter and plant capacity precisely. These biases 

were not observed for clear days, which is consistent with 

predictions based on the hypothesized spatial variability basis 

for the bias. The exact degree of annual bias observed for a plant 

would be expected to depend on the actual balance of clear and 

variable days its climate experiences. For example, the 20 MW 

plant is located in a Solar Variability Zone [12] of “very low”, 

the lowest on the scale, so the observed annual result could 

represent something close to a lower bound for impacts.  

We did observe a difference in the daily biases observed 

between the two plants. Both plants exhibited daily bias 

associated with variability, though significant variation in 

maximum bias varied depending on the day chosen. Generally 

speaking, high variability resulted in observed bias, but there 

was significant fluctuation observed in the actual maximum 

bias that was not uniquely correlated with variability score (a 

positive correlation coefficient between maximum hourly bias 

and variability score of 0.22 was observed). Intuitively, larger 

projects with equivalent inverter capacities could be expected 

to experience a higher bias under variable conditions, because 

the overall benefit of the post-inverter smoothing would be 

predicted to increase due to the wider spatial dispersion of the 

plant. However, confounding variables in the methodology 

here, including the baseline inverter size and an inability to 

independently control the operational data prevent the present 

a conclusive determination relative to this hypothesis. 

In the annual results, the larger 200 MW plant consistently 

experienced lower biases. Generalized interpretation of this 

result is hampered, both because of climatological differences 

in the sites and because the two plants had disparate inverter 

capacities (and thereby spatial footprints). So, a direct 

comparison between these results is not possible; a larger 

inverter footprint corresponds to a greater degree of smoothing 

that occurs prior to the clipping [4], meaning that the 

occurrence of individual inverter exceedance events may be 

intrinsically decreased.   

While our results indicate that there is a benefit to ac 

overbuilding that can be observed from operational data, there 

are several important limitations to understand when 

interpreting this work. By utilizing real operational data, it was 

impossible to completely eliminate the occurrence of actual 

inverter clipping that was present in the data, particularly for 

the annual result. While the individual clear and variable days 

were chosen to avoid the incidence of clipping as much as 

possible, clipping events are certainly present within the 

annualized representation of data, which might mask the ability 

to model the actual degree of long-term bias for these plants. 

Additionally, we observed that overbuild ratio corresponding to 

the peak bias varied depending on the mean production during 

a given hour, resulting from the formulation of the bias in Eq. 

1. Highly variable periods with a lower mean of generation 

exhibited high bias at a greater overbuilding ratio, because the 

clipping level did not begin to impact the plant until reaching a 

lower overall threshold. While this could in principle be 

addressed by changing the artificial scaling in the calculation of 

the bias ratio, doing so could also yield potentially erroneous 

results by representing an unrealistic scaled ramp rate.  

These variables may be able to be eliminated further study 

utilizing a simulated generation facility with simulated spatial 

variability to allow for a more consistent parameterization of 

how these effects result in plant bias. We believe this would 

allow researchers to develop a more complete understanding of 

the factors leading to ac overbuilding bias and to allow more 

concrete recommendations to be made for developers and 

operators.  

 

 



 

 

 
Fig. 2. Variation in bias with plant ac clipping level. Lines compare 

sample clear and high-variability days for each plant. 

 
Fig. 3. Variation in bias with plant ac overbuild on annual basis. 
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