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Abstract  —  Operators of utility scale photovoltaic plants can 

face challenges in accurately matching operational data at 
various levels with their physical locations in the plant. This may 

have financial implications due to misdirected maintenance 
efforts. A method to predict equipment locations using time series 
data analysis was developed, but previously relied on some 

manual processing. This paper details efforts to automate the 
technique for improved efficiency and to facilitate operational 
deployment. The automated methodology relies on selecting ideal 

cloud motion vectors by targeting time periods based on their 
variability score metric. Ten vectors with well-spaced angular 
directions were selected after filtering based on quality control 

parameters. After the analysis methodology was run for an entire 
plant, mislabeled equipment was detected by implementing 
optimization code for solving the well-known Assignment 

Problem. Because predicted equipment positions have a circular 
dependence on their original expected positions, the process was 
applied iteratively as mislabeled entities were identified to 

converge to a final assignment of predicted position for each 
plant component. The results from this algorithmic methodology 
agree with the validated results from the original manual 

method. These improvements further the goal of offering the 
method as a ready-to-use tool for validating the physical locations 
of equipment within a utility-scale photovoltaic plant. 

I. INTRODUCTION 

Operators of utility scale photovoltaic plants monitor the 

performance of the plant at various levels of equipment 

aggregation; besides output data from the entire plant, 

diagnostic generation data may also be monitored at the level 

of the strings, combiners or inverters. A single plant may 

comprise thousands of these equipment entities for which data 

is collected. Plant operators have expressed concerns with 

their ability to confidently ensure that all equipment labels in 

the data acquisition system match with their expected physical 

locations from plant design documents.  

A lack of confidence in the remote sensing data may have 

real financial costs. Conducting physical repairs on a plant is 

time and labor intensive and requires extensive planning. 

When equipment problems are identified from the data, low 

confidence in equipment locations could lead to delays as 

maintenance teams are dispatched to the wrong part of the 

plant, or in the worst case, the true physical location of the 

problem could remain impossible to identify. 

A field analysis method has previously been developed by 

the authors to validate expected plant equipment locations 

using operational data [1]. The method analyzes spatial 

variability in time series data for plant subcomponents to 

identify cloud motion over the plant. Cloud motion allows 

determination of the apparent relative positions of the plant 

components, which can be compared with their expected 

design locations. The method was first introduced in a paper 

that includes successful validation of location predictions 

made by the method against equipment mislabeling in an 

actual PV plant.  

One potential shortcoming of the published work is that 

initial implementations of the method relied on some manual 

interpretation of data. In the initial study, time periods with 

suitable variability and cloud motion were identified by a 

manual process. Additionally, identification of potentially 

mislabeled components within the plant and assignment of 

their corrected locations was also based on manual inspection 

of their predicted relative positions. In this paper, we detail 

progress toward fully automating the technique so that it can 

be applied more generally and without manual intervention.  

II. METHODOLOGY 

A full description of the field analysis method is provided in 

the original paper [1], but a summary is reproduced here. To 

apply the method to compute the effective position of a single 

plant component (in this case, a combiner), P1, we implement 

the following steps: 

1. Find two time periods, A and B, with stationary, non-

parallel cloud motion vectors (CMVs). 

2. Compute the relative time delay between P1 and 

neighboring combiners, Pi,  during each CMV window. 

3. Perform quality control and averaging across i to 

compute an averaged error vector representing the 

difference between the expected and apparent position 

of P1 along each CMV axis. 

4. Triangulate the apparent position, P’1, in two-

dimensional space from the pair of error vectors.  

5. Repeat and average for multiple A & B pairs to reduce 

uncertainty, yielding the final predicted position. 

In the initial study, after computing the predicted positions 

for each combiner according to these steps, the results were 

inspected and an attempt was made to reassign each combiner 

to the closest neighboring position. An example of this process 

from the initial publication is shown in Fig 1. It is important to 

note that in the initial study, these reconfigurations were based 

on manual assignment and interpretation, with a focus on 

validating the capability of the method. 

As described, two steps within the initial application of the 

method required some manual intervention: 1) identification 



 

 

of time periods with suitable CMVs, and 2) reassignment of 

combiners based on the predictions. In this paper, we report on 

efforts to automate these two stages of processing.  

 

 
 
Fig. 1. Example of manual position reassignment for a single 
inverter. Circles show predicted positions, while numbers in the 
circles indicate manually reassigned combiner footprint. Copied from 
[1]. 

 

A. Cloud Motion Vector Identification 

The methodology requires, at minimum, two time periods 

that experience cloud motion vectors that span the horizontal 

plane. Ideally, multiple such pairs would be identified to allow 

averaging that reduces the impacts of noise and uncertainty in 

the predictions. When approaching the task of applying the 

method to a plant, investigators are likely to initially be faced 

with the problem of too much data. For example, initial 

development of the method began with a full year of 10s 

resolution combiner current time series for the entire plant. 

Simply computing results for all possible time periods 

presents a computationally prohibitive task, so we aimed to 

develop an approach that can target suitable time periods that 

are likely to produce high quality CMV calculations and 

corresponding combiner position predictions.  

Several considerations impact the choice of suitable CMVs. 

First, both the field analysis approach and the CMV 

identification method of Jamaly and Kleissl [2] are based upon 

computing relative delays between plant constituent elements. 

The ability to compute consistent time delays between 

combiners requires that the CMV be uniform and stationary 

across the plant during the time period (in this case, targeting 

whole hours). This requires that we identify hour periods 

during which clouds are present and during which the cloud 

motion is consistent.   

Additionally, besides the mathematical requirement that the 

vectors span the plane, it is also desirable to constrain the 

relative angle of the CMVs to those with orientations that have 

sufficiently large perpendicular components. The triangulation 

of expected combiner position is performed by finding the 

intersection of the lines, perpendicular to the CMV axes, that 

pass through the corresponding error vector along each CMV 

axis. For pairs of axes that are nearly parallel or anti-parallel, 

small uncertainties in the error vector length may be amplified 

to large variations in the predicted combiner position. To 

reduce this effect, the original study globally required that 

CMV axes have an angular separation of at least 45 degrees 

(i.e. vectors are relatively angled from 45 degrees to 135 

degrees). For the purposes of automating the process, it would 

be desirable to ensure that the CMVs calculated yield a large 

number of nearly-perpendicular pairs so that averaging can be 

performed to reduce error in the final position predictions.  

We developed several steps as part of a process that were 

applied in this study to ensure that the most favorable CMVs 

were computed and chosen for further processing. Despite 

some degree of optimization that was performed on the codes 

being utilized, computational efficiency concerns still promote 

a focused approach. For the sample plant, calculation of the 

CMV for a 1-hour period takes around 5-10 seconds on a 

laptop computer. This would scale to around 12 hours of 

processing time for CMV’s for a full year of data, a timespan 

that would be unacceptable for revision and iteration of the 

method. 

To identify periods that were likely to have a consistent 

CMV, we first filtered to 1-hour periods with the highest 

values of the variability score (VS) [3]. CMVs were then 

computed for a subset of hours with the highest VS value. 

While a definitive size of this subset may depend on case-by-

case details, choosing 50 was found to be sufficient and 

computationally tractable for this case. From those 50 time 

periods with computed CMVs, we then eliminated those of 

low-quality based on metrics computed during the CMV 

calculation. First, the Jamaly and Kleissl CMV method 

contains both pairwise and holistic quality control values, so 

we eliminated any CMVs that failed the overall quality 

control. We also eliminated those for which only a very small 

number of combiner pairs passed the method’s pairwise 

quality control (using a threshold of a minimum of 100 pairs). 

This ensured that each retained CMV was based on a 

sufficiently large subset of the plant. Finally, we computed the 

correlation coefficient between the pairwise separation 

distance and time delay for all the combiner pairs that passed 

quality control. We excluded any CMVs for which this 

coefficient had a correlation coefficient value less than 0.8, as 

this would indicate that different combiner pairs experience 

inconsistent cloud speeds. For two different sample plants, this 

filtering from 50 CMVs resulted in 37 and 46 CMVs 

remaining. 

The final step was to select a subset of 10 CMVs that 

represented a variety of motion directions to ensure that 

multiple perpendicular pairs were available. In order to do so, 

we formed an optimization problem, whereby we defined a set 

of equally spaced vectors with orientations ranging from 0 – 

180 degrees. We rotated all CMVs into this same half-circle, 

motivated by the fact that both parallel and anti-parallel 

vectors are equivalently undesirable. Since the choice of zero 



 

 

degrees was arbitrary, we allowed the optimization to consider 

rotation of the equally spaced set by up to 18 degrees (i.e. the 

spacing between two optimally spaced vectors). We used an 

existing optimization code from the scipy library [4] to 

perform this calculation and select the 10 CMV vectors that 

most closely matched the best-case equally spaced set. A 

sample of the outcome of this process is shown in Fig. 2.  

 

 
 
Fig. 2. Example of downselecting CMV pairs from an initial set of 
50 hours. All valid pairs shown in black, and the chosen subset is 
shown in red. Vectors shown have their true direction, but the 
downselection process shifts all into the 0-180 degree range to 
eliminate both parallel and anti-parallel vectors.  

 

In summary, the automation of the CMV identification used 

the following steps: 

 

1. Compute VS for each combiner on an hourly basis.  

2. Choose 50 hours with the highest median VS for the 

plant. Compute CMVs for those hours. 

3. Downselect to CMVs that meet the following metrics: 

a. The CMV calculations pass holistic QC from 

the Jamaly and Kleissl method. 

b. At least 100 combiner pairs pass pairwise QC 

from the Jamaly and Kleissl method. 

c. The correlation coefficient between pairwise 

separation and time delay for valid combiner 

pairs exceeds 0.8.  

4. Select approximately ten one-hour periods with CMVs 

representing a variety of orientations, using these steps: 

a. Temporarily rotate south-directed vectors by 

180 such that all lie in quadrants I & II.  

b. Define an ideal, equally spaced subset of 10 

target vectors  

c. Perform optimization to select the 10 CMVs 

that form the closest alignment to that set. 

 

This yields a subset of 10 CMVs, from which valid pairings 

can be identified, allowing the subsequent steps of the field 

analysis methodology to be applied. The method will yield 

predictions of the effective, delay-based position of each 

combiner within the entire plant.  

B. Reassigning Combiner Locations 

After applying the field analysis method to determine 

predicted positions of each combiner, it is necessary to 

determine whether any mislabeling has occurred. In the test 

cases considered here, based on the physical configuration of 

the plant’s combiner connections, it is unlikely for combiner 

labeling errors to extend beyond a shared inverter. This is 

because the location of these connections is easier to confirm. 

That is, combiner wire outputs physically converge at the 

location of the connection to a single inverter and it is unlikely 

that they could be incorrectly connected to an inverter at a 

different location. Thus, the method for automated 

identification developed here focused on labeling errors that 

occurred within a given inverter only. In principle, however, 

the processes developed should be applicable to cases with 

different limitations or assumptions about the occurrence of 

labeling errors. 

The remapping computation was performed using a solver 

for the well-known Assignment Problem in optimization, as 

implemented in the scipy python package [4], [5]. The cost 

function for the solver was minimization of the total distance 

between the inferred combiner positions from the 

methodology and possible initial positions from the site plans. 

For each inverter, this resulted in a prediction of which 

combiner was most likely located in each location based on 

aggregate distances.  

It is important to note that there is a circular dependency in 

the computation of the predicted combiner positions. Since all 

computations are based upon relative time series delay 

between a combiner and its neighbors, a cluster of mislabeled 

combiners could still appear to have “correct” relative time 

delays compared to each other, while being in error relative to 

the plant as a whole. To handle this type of issue, the 

descrambling was performed iteratively: relative positions for 

combiners within an inverter footprint are computed, which 

are used to generate a remapped set of combiner positions, 

which then are used to recompute the relative positions. This 

process is repeated until either the recomputed positions 

converge (i.e. do not result in a change of the map), until the 

predicted configuration repeats (indicating a loop), or until an 

iteration limit is reached. This ensures that the final 

predictions were updated to reflect the information gained 

during previous remapping iterations.  

For each inverter in the plant, the automated steps used to 

compute the remapping for all combiners connected to that 

inverter were as follows: 

1. Apply field analysis to compute the inferred combiner 

positions for all valid CMV pairs.  



 

 

2. Average the positions over the CMV pairs to reduce 

error in the inferred position.  

3. Perform optimization at the inverter level to assign each 

combiner to the best fit combiner position from the site 

plans. 

4. Repeat steps 1 through 3 until the optimization does not 

result in a change to the assignments, or until 5 total 

iterations are performed. 

The resulting mapping is recorded and assumed to reflect 

the corrected positions of each combiner.  

A full implementation of the automated formulation of the 

method, along with demonstration codes, is available in the 

open-source solartoolbox library available on GitHub [6]. 

III. RESULTS & DISCUSSION 

The field analysis methodology using these automated 

processing approaches was applied to data from two 

operational PV plants. The first plant was an approximately 20 

MW (25 inverters, 221 combiners) plant, described in the 

original manuscript introducing the methodology. The second 

was a larger plant, approximately 30 MW in capacity, 

consisting of 48 inverters with 366 total combiners. The 

described automated workflow was applied to both plants on 

an inverter-by-inverter basis to yield predictions of corrected 

combiner positions within the plant.  

A. Iterative reassignment 

A sample of results from the iterative method for a single 

inverter that experienced mislabeling is shown in Fig. 3. As is 

evident, the initial calculations for the first iteration show a 

significant degree of disagreement between the combiner 

positions indicated in the design plans and those apparent 

from the relative time delay between the combiners. The 

descrambled (optimized) positions from iteration 1 were re-

processed by the model, leading to changes in the predicted 

combiner positions, as reflected in the initial calculation for 

the second iteration. Due to these shifts, the second iteration’s 

positions for combiners 2 and 3 were also remapped and an 

additional update was made. Finally, when optimizing the 

combiner mapping for the third iteration, no change in 

footprint assignment was observed, indicating that the re-

mapping had converged. For the test cases plants, the most 

common result was no mislabeling, meaning only a single 

iteration was performed. For inverters where mislabeling was 

identified, convergence typically occurred in 2-3 iterations. A 

very small number of inverters failed to converge, which will 

be discussed subsequently in Section III.C.  

 
(a) First iteration 

 
(b) Second iteration 

 

 
(c) Final mapping 

 
Fig. 3. Three iterations of the reassignment output for one inverter 

of the sample plant. In the final mapping, the reassignment was 

complete because assignments were unchanged after additional 

assignment.  

 



 

 

B. CMV Selection 

In terms of evaluating the effectiveness of the CMV 

selection algorithm, our operational experience on one year of 

data for these two example plants indicates that an abundance 

of potential CMV periods were available and that those 

periods represented a sufficiently diverse set of cloud 

directions from which to form many suitable CMV pairs. In 

fact, this plethora of data is what lead to the need for the  

downselection methodology in the first place. Fig. 2 shows the 

diversity of time windows for which valid CMVs were 

computed and indicates the sufficiency of directional 

variation.  

However, it is feasible to consider a case in which, for 

example, all high quality CMVs returned by the selection 

algorithm are nearly parallel or anti-parallel, resulting in a lack 

of access to sufficiently diverse CMVs to form perpendicular 

pairs. In such a case, we would recommend first attempting to 

tune the filtering parameters described in Section II.A, or if 

available, looking at a longer time period (i.e. more than one 

year of data). Additionally, it may be possible to produce 

optimal results by selecting different CMVs for different parts 

of the plant (e.g. due to localized quality control issues during 

different time windows), but this was not tested for the plants 

in question, due to the abundance of suitable data. It remains 

true that suitable CMV identification remains a limitation of 

the method. Sites with insufficient cloud cover to produce 

variability from which CMV can be identified, or with a 

singular CMV direction (i.e. with nearly parallel CMVs) are 

unsuitable for use with this method.  

C. Plant-wide reassignments 

We applied the methodology to reassign positions for two 

complete test plants and the results for reassignment for each 

plant are shown in Figs. 4 and 5. Three subsections of the first 

plant were validated in the initial study on the method [1], and 

results of the automated process agree with those validations. 

Further, on both plants, the majority of predicted combiner 

positions coincide with their expected positions from the 

design drawings. This is consistent with the assumption that 

labelling errors in the plant are isolated and uncommon. When 

predictions indicate a need for reassignment, most final 

reassigned positions fell approximately within inverter 

footprints throughout the plant during and after convergence 

of the calculation. These results indicate the overall suitability 

of the automation approach for the field analysis technique.  

With regard to the descrambling methodology, we observed 

that the method appears to produce results that are reasonably 

consistent with operational experience on the plants with a 

few exceptions. Across the two plants, 3 out of 73 total 

inverters resulted in predictions that were unable to converge 

after continued iteration, all occurring in the first plant (shown 

in Fig. 4). These instances primarily led to cases where the 

overall descrambling of the positions was effective, but a 

subset of two or three combiners led to a closed loop cycle of 

predictions as the iterations were repeated. Further work at 

identifying uncertainty in the calculations will hopefully 

address that type of situation, but absent further study, users 

may consider inspecting the results on an individual CMV-

pair basis (or running on an alternate CMV subset) to attempt 

to identify whether patterns in the predictions lead to the 

method’s confusion. Even in the worst case, the method still 

provides a greater degree of clarity as to which parts of the 

plant experience ambiguity in apparent combiner locations 

relative to the expected design plans. 

 

Fig. 4. Full reassignment for first sample plant. Upper shows 

results prior to remapping while lower shows remapped results.  

 

 



 

 

Fig. 6. Full reassignment for second sample plant. Upper shows 

results prior to remapping while lower shows remapped results.  

 

III. CONCLUSION 

The approaches described in this paper significantly 

improve the ease of implementing the field analysis 

methodology for validating plant layout. By eliminating the 

need for manual selection of cloud motion vectors and 

position reassignments, potential users could directly 

implement the methodology to validate a PV plant’s as-built 

connections and improve confidence in the operational data. 

Case study implementation of the methodology on two 

operational plants demonstrates the functionality and 

capability of the approach, though a few areas for continued 

study and improvement were identified. Further study on the 

methodology is warranted to help address questions about the 

uncertainty of the position predictions, and help users resolve 

edge cases where the method fails to converge, or where 

issues occur due to poor underlying data quality. Ultimately, 

we believe the methodology as implemented here may be of 

significant interest to plant operators to help them identify 

locations where data confidence may be questionable.  
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