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Abstract  —  Identification of PV panels from aerial imagery is 

a potential strategy for building comprehensive behind-the-meter 
PV datasets. Several previous studies have utilized Convolutional 
Neural Networks with the goal of producing tools that can perform 

these identification tasks. Neural Network approaches rely on 
labelled data for training, with several aerial imagery datasets 
with labelled PV already available. This study aims to investigate 

generalizability of models trained on one set of labelled PV data to 
other datasets, to further understanding of how these models can 
be applied. Six different PV datasets were utilized, and test data 

results were compared. Overall, we find that generalizability 
suffers when models are presented with different data than they 
were trained on. We describe some dataset features that led to 

particularly poor generalization. This study highlights the need for 
further research to investigate strategies for improving 
generalizability of trained Neural Network models.    

I. INTRODUCTION 

A multitude of academic and industrial contexts require 

knowledge of the location and configuration of distributed 

photovoltaic (PV) installations. Examples include evaluating 

renewable energy policy by tracking regional PV growth rates 

and providing technical data to support aggregate-level 

forecasts of distributed PV generation, necessary to simulate 

and operate climate-neutral energy systems. Generally, no large 

scale registry of distributed PV systems exists. Detailed data 

about behind-the-meter PV may be particularly difficult to 

obtain. Even in cases where data on PV installations exists, it 

may not be accessible to researchers or the general public. 

Instead, availability of data on these PV systems varies widely 

by jurisdiction and is subject to the policies of local 

stakeholders who directly collect and use this information.  

Recent efforts to improve data availability for distributed PV 

have attempted to identify systems visually from satellite or 

aerial imagery. Progress has been made utilizing Deep Learning 

on these imagery sources, for instance for the United States [1], 

regions of Germany [2], [3], China [4] and even worldwide [5]. 

Global studies mostly rely on publicly available image sources 

with wide coverage, but low-detail spatial resolution. This 

typically limits detection to utility-scale PV systems with large 

capacity that are visible from satellites on rough spatial 

resolutions.  

A suitable global PV inventory also needs to contain 

residential PV sites that are small, but numerous, making up 

more than 40\% of the global PV capacity [6].  The rough 

spatial resolution of satellite imagery may limit its usefulness 

towards this task. Instead, aerial imagery may be a more reliable 

source for high resolution PV detection. Aerial imagery is 

becoming increasingly open-access, but due to its origin from 

airborne flights, is usually only available to a limited spatial 

extent. Furthermore, its localized nature may lead to greater 

diversity in the imagery, both in terms of acquisition equipment 

and processing, and resulting from local visual diversity in the 

area being imaged. To derive a global PV registry which 

includes small-scale and large-scale PV systems, it is therefore 

likely that PV detection systems need the ability to deal with a 

range of different image sources with variable spatial resolution 

and availability.  

Regarding neural network models, many academic studies 

are based upon performance using individual data sources. But 

the need for a flexibility in generating a global PV registry 

raises the question how well models trained on single-site data 

generalize to other datasets, particularly for higher resolution 

aerial imagery datasets. Studies investigating the 

generalizability [7], [8] have already shown that neural 

networks generalize poorly when trained and tested on different 

cities, even when the images originate from the same data 

source. Different local characteristics, as geography and 

population density [8] may impact generalizability. A study 

testing the generalizability more broadly across different local 

sites and data sources is still lacking.   

This study aims to fill this gap by systematically testing how 

well models trained on single datasets perform on other sites, 

using six different labeled aerial image datasets, including 

Northern Germany, Southern France, the United States (sets 

from California and New York City). These six datasets were 

labeled using different methods, by different research groups 

and have different original data sources. This provides a 

realistic testbed for verification metrics when a model is applied 

outside its trained dataset without any modifications.    

II. METHODOLOGY 

A. Model Architecture 



 

This study used a Fully Convolutional Neural Network 

architecture that had previously been applied for the purpose of 

identifying PV arrays in aerial images [3]. Specifically, the 

network architecture utilized was a u-net [9], which was 

designed for semantic segmentation tasks. A u-net architecture 

uses symmetric encoder and decoder paths, producing a 

structure that resembles the letter u. The implementation of u-

net used in this study was based on the python library 

segmentation_models [10], which contained a version of u-net 

built using Tensorflow and Keras [11], along with pretrained 

weights from the ImageNet competition [12]. A backbone of 

ResNet-34 was used for the u-net model, as it was previously 

shown to produce similar quality results to more detailed 

backbones [3] for this task. 

As the primary outcome of this study is the application of 

neural networks, rather than the neural network itself, a 

thorough optimization of the training process was not 

conducted. Rather, settings that produced reasonable and 

consistent results were used. Training was performed on a 

desktop computer with a single, consumer-grade GPU, and 

completed in a reasonable timeframe (2-3 hours per training 

dataset). During training, the encoder weights were frozen to 

their pre-trained values to reduce the number of weights being 

adjusted. Early stopping was employed to prevent overfitting, 

stopping the training after 10 consecutive epochs without a 

reduction in the loss. Data augmentation was used to simulate 

features of a larger dataset. The parameters used for 

augmentation were: rotation (up to 30°), zoom (factor of 0.2) 

and height and width shifts (factor of 0.1 each). The weights 

with the best value of validation loss observed during training 

were retained for evaluation. 

B. Source Data 

Data was utilized from six separate publicly available 

datasets consisting of labeled PV installations in aerial/satellite 

images: two cities in California, Fresno and Stockton (CA-F 

and CA-S) from [13], two datasets in France (FR-G and FR-I) 

from [14] using images from Google Earth and the French 

government (IGN) respectively, a dataset of Google Earth 

images from Germany (DE-G) used in a previous study by the 

authors [3] and a newly labelled dataset based on publicly 

available images for Queens, New York (NY-Q) [15].  

In a few of the original datasets (CA-F, and CA-S and NY-

Q) raw images were too large (e.g. 5000x5000 pixels) to be 

processed by the model as whole images. Thus, these large 

images were split into tiles of smaller size for the training and 

testing. Tiles that did not contain any labelled pixels were 

excluded from each dataset. The overall number of retained 

tiles and other details of the datasets are provided in Table I. 

Due to the variable number of tiles in each dataset, a subset 

of 1000 tiles was randomly chosen from each to form the 

representative subset for that data source. This ensured that all 

models were trained on an equal quantity of data. Each set of 

1000 images was randomly split into sets of 720 training, 80 

validation and 200 test tiles. These split sizes were consistent 

across all datasets, and did not include any crossover. All 

images were resized to 576x576 pixels during processing to 

match the network architecture. Consequently, smaller images 

(e.g. FR-G and FR-I datasets) had an effective increase in scale 

of about 1.4, while the datasets with larger tiles were scaled 

down by a factor of around 0.9. The effective resolutions of 

each dataset after scaling are also given in Table I. 

In addition to the 6 original datasets, a synthetic combination 

dataset was created by combining 133 of the processed tiles 

from each dataset (with two extras chosen from NY-Q to reach 

the correct total number of 1000) to compare training on the 

aggregate. After training, each trained model was evaluated on 

the test data for all the datasets and values for several 

performance metrics were recorded.  

While fundamentally subjective in nature, an effort was made 

to describe contextual differences between the datasets. Five 

separate categories were created to describe the various types 

of characteristics found within the datasets: large structures 

and/or flat roofs (often commercial buildings), large open 

spaces (roughly more than 50\% of the image), agricultural 

(identified by visible patterns or rows), large bodies of water 

and utility scale PV. Images for each category from each 

dataset's 1000 tile subset were manually counted and rounded 

to the nearest ten to reflect the subjective nature of these 

judgments. A table summarizing these categories is in Table II. 

The remainder of images in each dataset primarily consisted of 

residential housing, for which the approximate number of 

structures per image is notated as well. 

 

TABLE I 

DATASETS 

Dataset Tot. Tiles Tile Size Resolution Scaled Res. Ref 

CA-F 1,044 625x625 0.3 m/px 0.32 m/px [13] 

CA-S 4,192 625x625 0.3 m/px 0.32 m/px [13] 

FR-G 13,303 400x400 0.1 m/px 0.07 m/px [14] 

FR-I 7,865 400x400 0.2 m/px 0.14 m/px [14] 

DE-G 1,325 639x640 0.18 m/px 0.2 m/px [3] 

NY-Q1 1,007 625x625 0.15 m/px 0.16 m/px [15] 

 1 labeling of this dataset is still ongoing 

TABLE II 

CONTEXTUAL DIFFERENCES BY DATASET (APPROXIMATE) 

Dataset Large/Flat Open Space Agri. Util. PV # Bldg/Tile 

CA-F 70 140 40 0 20-40 

CA-S 70 80 10 0 20-40 

FR-G 10 20 0 0 2-5 

FR-I 20 90 20 0 5-10 

DE-G 60 80 10 10 10-20 

NY-Q 130 10 0 0 10-20 

 



 

Despite the qualitative nature of these categorizations, a few 

generalizations can be made. All of the datasets primarily 

consisted of detached or semi-detached residential dwellings. 

The NY-Q dataset contained the lowest number of images that 

featured large open spaces and the highest number of large and 

flat-roofed structures (often commercial or industrial buildings 

in this case), which corresponds to its more urban character. 

Qualitatively, NY-Q also had less visible vegetation 

intermingled in the residential areas (i.e. trees) than the other 

datasets. CA-F had the highest frequency of images with large 

open areas, and many of these areas showed vegetation in 

rows/patterns that are presumed to indicate agricultural activity 

(and impacted the detection of PV as will be seen). The number 

of residential buildings per tile roughly corresponded to the 

scaled resolution of the images, with the two California datasets 

having the lowest zoom level (covering the widest area), FR-G 

having the highest zoom level, and FR-I, DE-G and NY-Q in 

the middle. It is also notable that the FR-G and FR-I datasets 

were both designed to have tiles centered on a positive PV 

system [14]. In part this explains some of the counts seen in 

Table II for FR-G; due to the high zoom level and smaller 

overall tile size, centering the tile on the PV array may have 

decreased the probability of observing some of the features 

present in some of the more randomly aligned datasets. 

III. RESULTS AND DISCUSSION 

As stated, each of the seven trained models was evaluated 

using 200 test images associated with each of the six datasets. 

Precision and recall are especially useful metrics in interpreting 

the performance of these models. Precision can be interpreted 

as the percentage of predicted positive pixels that are correct, 

defined as in Eq. 1. Recall can be interpreted as the percentage 

of the labelled positive pixels that are identified by the model, 

defined as in Eq. 2. The Jaccard index, also called the 

intersection over union, or IoU, is defined in Eq. 3. IoU 

represents the match between the the actual and predicted PV 

regions in the image and is useful in representing the overall 

performance of the model. Results of precision and recall for 

the models are presented in Table III and Table IV respectively. 

Results for the IoU are given in Table V. 

 𝑝 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
=

𝑇𝑃

𝑇𝑃+𝐹𝑃
 (1) 

 𝑟 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐿𝑎𝑏𝑒𝑙𝑒𝑑 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
=

𝑇𝑃

𝑇𝑃+𝐹𝑁
 (2) 

 𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
=

𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
 (3) 

In conjunction, these metrics help us understand the model's 

performance. High values in both precision and recall indicate 

that the model identifies most ground truth pixels and does so 

correctly, while low values in both indicates that the model 

makes mostly incorrect positive identifications and fails to 

identify many ground truth positives. The crossed value cases 

on the two metrics provide useful information as well. A high 

precision with low recall indicates that the model is usually 

correct when it predicts positives, but that it fails to identify 

many of the ground truth positives (i.e. is very selective about 

predictions). For example, the FR-I trained model is correct 

95\% of the time when predicting pixels to be PV in the FR-G 

test dataset (precision), but identifies only 36\% of the overall 

PV pixels (recall). Conversely, a low precision with a high 

recall indicates that a model identifies most of the positive 

pixels in the ground truth, but also incorrectly identifies many 

pixels as PV. An example is the CA-F trained model, which 

predicts 59\% of the PV pixels from the DE-G ground truth 

dataset (recall), but is only correct about its positive PV 

predictions 7\% of the time (precision). 

A. Individual Model-to-Test Case Performance 

Generally, models performed better on their own test data 

than on other test datasets, which is unsurprising, but does 

highlight the challenges in generalization of models that has 

been described by the literature. Additionally, each model 

performed best of the group on its corresponding test data, with 

a few minor exceptions in the precision metric. The 

combination dataset had relatively good performance for all test 

datasets. This is unsurprising as its more diverse training set 

seems to have helped it to produce more generalizable results. 

Figures 1 - 6 show results on one of the better performance 

images for each test dataset. The images in these figures are all 

examples of cases where all models performed reasonably well, 

and were selected from the top 5\% of average IoU scores for 

each test set.  

The average IoU performance of models on their own test 

data was a value of 0.71. As measured by the IoU score, most 

generalization from trained models to different test sets was 

quite poor, though a few examples of moderate performance 

were observed. The best two examples of generalization when 

judging by IoU were FR-I model's performance on NY-Q data 

and CA-S predicting data from CA-F. In part, the connection 

between the two California cases may result from their shared 

data source and overall locale. However, the lack of the 

reciprocal boost to performance of CA-F on the CA-S test data 

suggests that other factors may be at play.  

TABLE III 

PRECISION RESULTS BY DATASET 

 CA-F CA-S FR-G FR-I DE-G NY-Q 

CA-F 0.87 0.46 0.36 0.48 0.07 0.25 

CA-S 0.82 0.79 0.51 0.31 0.22 0.24 

FR-G 0.10 0.03 0.91 0.76 0.41 0.52 

FR-I 0.63 0.64 0.95 0.79 0.67 0.77 

DE-G 0.70 0.65 0.83 0.91 0.77 0.82 

NY-Q 0.59 0.66 0.90 0.87 0.75 0.90 

 Train datasets in rows, test datasets in columns 



 

Investigating more deeply, the individual images with the 

best- and worst- IoU score performance were visualized for 

each of these combinations. In the case of FR-I predicting on 

NY-Q, the best performing images were dominated by large 

commercial rooftop systems (one shown in Fig. 6). The worst 

performing images were predominantly of residential housing, 

but no particular pattern was able to be discerned from 

qualitative inspection. In the case of CA-S predicting CA-F test 

data, the best performance was observed on large scale systems, 

as well as images with PV closely clustered, as opposed to 

scattered across the image. Several high performance images 

include instances of apparent agriculture, for which some 

models exhibited significant confusion (as shown in Fig. 7). No 

clear pattern was visible in the poorly performing images from 

CA-S to CA-F. Several ground mounted systems were missed, 

and many of the poor performing images did contain very small 

segments of PV. Though none of the models were a great 

success, the FR-I model was most generalizable overall, having 

the highest average IoU score across all other test sets (IoU = 

0.31). 

B. Overall Generalization 

The worst individual example of generalization was the FR-

G model, which had exceptionally poor performance on both of 

the CA test sets. Even FR-G's best performance on images 

within CA-S and CA-F showed essentially no skill at 

prediction. Since FR-G had the highest scaled detail level (0.07 

m/pix) by a factor of two, this may suggest that the models are 

not adapting well to imagery at lower zoom levels. While FR-

G generalized poorly overall, it showed its best test 

performance on the FR-I dataset, which in addition to having 

the closest scaled resolution, was also produced by the same 

labelers and for the same geographic region.  

The average generalization performance on each metric was 

computed by excluding the results for each model's own test 

data and that for CMB-6. The highest IoU scores averaged 

across all models occurred for the FR-I test data (IoU = 0.36) 

and the NY-Q test data (IoU = 0.32), indicating that these test 

data were easiest for a general model to predict. It is important 

to note though that these numbers are well below the 

performance achieved by the specially-trained models. The 

easiest images for all models to predict in the FR-I test data 

were primarily relatively large systems, with very clear panel 

frames. The most predictable images in NY-Q were all large 

commercial-scale systems, also with clearly visible module 

frames.  

The FR-G test data was the hardest for all other models to 

predict (average IoU = 0.17). However, most models had 

relatively good precision on this model, indicating that models 

were reluctant to predict positive values in FR-G, but were 

often correct when they did. One noticeable feature in the FR-

G predictions is that most models tended to discretize the 

panels, rather than predicting overall areas of panels. This effect 

can be seen in Fig. 3. This may be a consequence of the higher 

zoom levels making the module frames appear to be gaps. FR-

G's predictions on its own data did not exhibit this feature. This 

also points to how differences in labeling of module frames, and 

for larger systems, gaps between rows may impact the quality 

of predictions, especially when working with data sources at 

varying zoom levels. Despite the usage of different zooming 

levels in data augmentation, the models seem to be highly 

sensitive to the spatial resolution of the image source.  

C. Combination Model Performance 

As stated, the combination model (CMB-6) was trained on a 

random selection of 133 images from each other dataset. 

Besides representing a more generalized training source, this 

also provides the combination with a small sample of data from 

each test set it will be compared to. As seen in Tables III - V, 

this led to the combination model having relatively good 

precision across all test sets, meaning that it tended to avoid 

false positives. Except for the case of CA-F which showed 

exceptional generalization from CA-S, CMB-6 also had the 

best IoU score for each test dataset aside from specifically 

trained model for that dataset.  

  

TABLE IV 

RECALL RESULTS BY DATASET 

 CA-F CA-S FR-G FR-I DE-G NY-Q 

CA-F 0.79 0.59 0.15 0.58 0.59 0.35 

CA-S 0.62 0.72 0.13 0.47 0.59 0.37 

FR-G 0.06 0.01 0.88 0.52 0.15 0.29 

FR-I 0.15 0.23 0.36 0.84 0.37 0.67 

DE-G 0.19 0.33 0.11 0.30 0.79 0.48 

NY-Q 0.07 0.24 0.15 0.50 0.47 0.89 

 Train datasets in rows, test datasets in columns 

TABLE V 

IOU RESULTS BY DATASET 

 CA-F CA-S FR-G FR-I DE-G NY-Q 

CA-F 0.71 0.35 0.11 0.36 0.06 0.16 

CA-S 0.55 0.61 0.11 0.22 0.17 0.19 

FR-G 0.03 0.00 0.81 0.45 0.13 0.26 

FR-I 0.13 0.19 0.35 0.69 0.31 0.56 

DE-G 0.18 0.29 0.11 0.29 0.63 0.44 

NY-Q 0.07 0.22 0.15 0.47 0.40 0.81 

 Train datasets in rows, test datasets in columns 



 

  

Fig. 1. Tile from CA-F showing prediction by each model. 

Fig. 2. Tile from CA-S showing prediction by each model. 

Fig. 3. Tile from FR-G showing prediction by each model. 

Fig. 4. Tile from FR-I showing prediction by each model. 

Fig. 5. Tile from DE-G showing prediction by each model. 

Fig. 6. Tile from NY-Q showing prediction by each model. 

Fig. 7. Tile from CA-F showing incorrect identification of agricultural rows by some models. 



 

Generally speaking, the images for which CMB-6 had its 

worst performance were comparable to those already described 

for other datasets. This is also true for the case of CA-F, the test 

data that was most challenging for CMB-6. As mentioned, the 

precision remained relatively high for CA-F indicating that 

inclusion of more general training data improved its selectivity 

in making predictions for that data. CMB-6 experienced the 

largest benefit on FR-G when compared to predictions of other 

datasets.  Including a small quantity of the hardest-to-predict 

data improved the model substantially for that case. Looking at 

image-wise performance, CMB-6 avoided the discretized 

module predictions that other models tended to experience for 

FR-G. Its worst performing images were characterized by a 

high number of false positives. 

III. CONCLUSION 

Identification of solar PV from aerial or satellite imagery has 

potential to improve the quality of data on distributed solar 

installations and to broaden access to such data. A growing 

number of labeled datasets are available to support training of 

neural network models for this task. However, generalization of 

the models across locales and image sources is a necessary 

technical hurdle to clear to permit these datasets to find broad 

application.  

This study found that generalization of models trained on a 

single dataset is relatively challenging when applied to other 

datasets. This result is consistent with conclusions made by 

other investigators [7], [8]. We observed some limited cases of 

strong generalization between models, but without an ability to 

draw strong conclusions on the basis of qualitative 

interpretation of the datasets alone, however some inferences 

were possible. The worst performing model was trained on a 

dataset that had a significant difference in zoom level as 

compared to others, which is likely to have had an impact on its 

performance. Overall, commercial rooftops and large scale 

systems tended to be best predicted across all models. A model 

trained on a combination of data from each of the test sets 

showed adequate (but not exceptional) performance across all 

sets of test data. Where most models showed modest precision, 

albeit with low recall, the combination model struck a middle 

ground to improve performance: raising the recall at the cost of 

some precision.  

We have described some of the strengths and weaknesses of 

generalization across six separate aerial imagery datasets 

applied for identification of PV. However, no hard conclusions 

were able to be reached on the basis of this data alone. Further 

work is needed to test methodologies that may improve the 

generalizability of the trained models and address the 

differences found within the source data. These steps may lead 

to the ultimate goal of producing application-ready tools for 

computer-based aerial identification of PV. 
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