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Abstract—Spatiotemporal variability of irradiance has been a
topic of interest in the literature. This study attempts to separate
advective and uncorrelated portions of the spatially distributed
irradiance by comparing cross correlations between site pairs
within an irradiance measurement network and accounting for
time lag when calculating those cross correlations. Following
techniques in the literature, cross correlations are computed as
a function of site pair separation distance for multiple wavelet
transform timescales. Results show that the well known form
of the correlation’s decline can be maintained by considering
the lagging correlation and the component of the site pair
separation distance perpendicular to the overall cloud motion.
This may open the door for additional fidelity in modeling of
spatiotemporal irradiance that more formally represents how the
loss of correlation with distance depends on the cloud motion
vector.

Index Terms—variability, spatial aggregation, cloud motion
vector, wavelet variability model

I. INTRODUCTION

Spatiotemporal variability of irradiance is a topic of interest
for modelers of photovoltaic (PV) power generation. All
solar generation is made up of spatially distributed modules
that collect the solar resource, converting solar irradiance to
electricity. In contrast, irradiance monitoring efforts often take
the form of pyranometer stations that provide individual point-
based measurements. Even the best measurements consist
of a few point-based measurement locations. The output of
spatially distributed PV generators is known to exhibit a lower
degree of variability than these point measurements. This
difference can be attributed to the spatial smoothing effect as a
distributed plant aggregates (integrates) the irradiance over its
geographic extent. Models of this effect exist, and represent a
range of different phenomenological bases.

II. BACKGROUND

Models of spatial aggregation of irradiance attempt to relate
the variability of a single point irradiance time series to that
of an entire PV plant.

One of the most widely used models of this phenomenon
is the Wavelet Variability Model (WVM) [1]. The WVM
represents a distributed plant as a set of discrete points and
infers a reduction in variability based on the reduction of
correlation across this point population. It uses a functional
representation of the correlation between spatially distant
points i and j that depends on the separation distance, dij ,

the cloud motion speed, Vc, and the wavelet mode timescale,
t̄ [2]:

ρij = exp

(
− dij

Vc

2 t̄

)
(1)

In computing the plant’s output, the magnitude of each
wavelet mode is scaled by a factor that depends on the correla-
tion for all possible site pairs making up the plant. The shortest
scales (highest frequencies) experience the greatest reduction,
due to the inverse relationship between the correlation and
the timescale. Here, the scale of the wavelet mode for the
aggregate plant, wP , is scaled down relative to the reference
as the square root of the sum of all site pair correlations as
found via Eq. 1.

wP (t) = wref (t)

√
ρsum
N2

(2)

The basis of the scaling, along with the derivation of the best
fit to real data, is laid out in the two sources that were cited
in the preceding text [1], [2]. The correlations described are
instantaneous correlations, i.e. the site pairs are tested only
for simultaneous variability, without allowing for any time
lag. However, as noted by the original authors [2], ”along-
wind sites can become negatively correlated ... if there is
frozen cloud field advection.” These negative correlations were
also observed in data by other investigators [3], [4]. This
occurrence actually implies that analyzing only instantaneous
(i.e. zero-lag) correlation can be misleading and does not pro-
vide any discrimination of the relationship between the actual
variability signal (i.e. cloud-advection-induced variability) and
uncorrelated ”noise” in the spatial variability of the plant.

The Cloud Advection Model (CAM) [5], [6] was developed
as an attempt to describe the fully frozen condition, which is
akin to assuming perfect correlation between all site pairs in
the direction of the cloud motion, when accounting for time
lag. The original reports of the CAM describe improvements
in representing the frequency domain characteristics of the
aggregate plant response. However, they also describe situ-
ations in which the assumption of perfect correlation is too
strong. That is, high frequency oscillations are observed to
be incoherent, implying a loss of lagging correlation with
increasing frequency. As such, some modification is necessary
to account for the decorrelation present in the observed data.



Fig. 1. Maps of the measurement campaign layouts for each of the datasets used. Note that subplots a-d share a scale, while e-g repeat previous figures at a
higher scale to show additional detail for these configurations. a) HOPE (Jülich), b) HOPE-Melpitz, c) Varennes, d) Alderville, e) Varennes (detail view), f)
Alderville (detail view), g) HOPE-Melpitz (detail view).

The analysis in this paper seeks to describe the middle
ground between the WVM (no advective lag) and the CAM
(frozen advection) by investigating the relationship between
lagging correlations between multi-scale wavelet modes and
the distance of site-pair separation.

III. DATA

Two different distributed irradiance data sources were used
in this study. The HOPE campaign [7] made distributed
measurements of irradiance in Germany using a network of
point sensors. The original campaign was conducted with 100
sensors near Jülich, Germany, while an second campaign was
conducted with 50 of those sensors installed near Melpitz,
Germany. The data for both campaigns have a time interval of
1 second. An additional distributed irradiance dataset consists
of two distributed measurement sites in Eastern Canada [8],
one near Varennes, Quebec and one near Alderville, Ontario.
Data from these sites was sampled at a maximum rate of
100 Hz, but data were only recorded for time intervals when
the irradiance underwent a significant change. As a result,
back-filling was necessary to complete the time series. In
order to provide a consistent time step with the HOPE data,
the Canadian site measurements have been resampled by
averaging to a 1 second sample rate for this study. This has
the added benefit of removing the somewhat unrealistic step
changes from the irradiance timeseries.

Throughout the remainder of this paper, the four sites will
be abbreviated with designations JUL (Jülich), MEL (Melpitz),
VAR (Varennes) and ALD (Alderville). An image of the

distribution of the sensors for each campaign is given in Fig.
1.

These datasets represent various levels of geographic extent
and variable cloud motion conditions. The largest site is JUL
covering a total region of roughly 10km x 5km along its
diagonal axis, while the two Canadian sites are smallest at
approximately 0.25km x 0.25km. MEL spans roughly 3km x
2km, but also contains a relatively dense section of centrally
located points. For this study, data used from VAR and ALD
was limited to the publicly available, ”variable” and ”highly
variable” days on the Natural Resources Canada (NRCAN)
website 1.

A. Calculation Methodology

Time series were obtained for each dataset and all were
resampled to a sampling period of 1 second. Irradiance was
converted to clearness index using the simplified solis clear sky
model as implemented in PVLIB-Python [9]. A time window
of interest was chosen for each dataset, during which the cloud
motion vector was observed to be approximately constant. For
ALD and VAR, this window was from 08:00-16:00 on the
days indicated. For MEL, the window chosen was September
8, 2013 from 09:00-13:00 and for JUL, it was May 15, 2013
from 09:00-15:00. Cloud motion vectors were computed using
the method described by Jamaly and Kleissl [10], which was

1https://www.nrcan.gc.ca/energy/renewable-electricity/solar-
photovoltaic/18409



Fig. 2. Comparison of multiple timescales of wavelet modes for a 5 minute
period for two separate sites in the ALD dataset.

compared to and yielded similar results to the method of
Gagné et al [11], [12].

Wavelet modes were calculated using the implementation
of the WVM in PVLIB-Python [9]. A total of 12 modes with
timescales from 2s up to 4098s were computed for each time
series. We excluded the shortest timescale as its parent wavelet
shape was inconsistent with the top-hat wavelet used for all
other modes. The cross correlation between every possible site
pair, at every wavelet timescale, was computed using the signal
processing library within scipy [13]. Scaling was applied to
the cross correlation results, such that the value represented
the correlation coefficient, ranging from zero to one. Results
were computed at all possible lags without any biasing applied,
which provides a slight favoritism to smaller lags. An example
of the wavelet modes for two separate sites is shown in Fig.
2. The lagged nature of the correlation between these sites is
clearly visible, especially for intermediate timescale modes.

IV. RESULTS

Plots similar to those of Lave et al [2] were generated to
show the relationship between pairwise correlation, separation
distance and wavelet timescale. To understand the results with
respect to cloud advection, the site-pair separation distance
was further differentiated into parallel and perpendicular direc-
tions, relative to the cloud motion vector. The absolute value
of the perpendicular distance is used in the colorization of the
plot. The results for the ALD very-variable day are shown in
Fig 3.

As is evident from the leftmost plot, the proposed correla-
tion of Lave et al. [2] is a good fit for the zero-lag correlation
case. However, when computing the the maximum correlation
allowing for a temporal offset (lag), we achieve the result in
the central plot in Fig 3, which exhibits an upward shift for
nearly every point, but especially those with small separation
distances perpendicular to the cloud motion. Locations with
a larger perpendicular separation are not as significantly af-
fected, indicating that the correlation for these points is already
well explained by the zero-lag case. We attempt to correct
for this biasing of the correlation by replacing the absolute
distance in Eq. 1 with the perpendicular separation distance
in computing the x-axis variable (see Eq. 3). As seen in the
right panel of Fig. 3, use of this distance helps return the
dispersion of the data to the prediction line. The suitability of
this match indicates that the uncorrelated variability tends to
occur perpendicular to, rather than along, the cloud motion.

ρij,lag = exp

(
−d⊥ij

Vc

2 t̄

)
(3)

While Fig. 3 maintains continuity with how this data is
presented elsewhere in the literature, the x-axis scaling has
the undesirable effect of compressing all the short timescale
points almost onto the y-axis. As utilizing the peak lagging
correlation mostly affects short- and moderate timescales, it
would be helpful to utilize an axis scaling that better highlights
those timescales. In Fig. 5a, we re-present the data from Fig.
3, but include the cloud speed coefficient in the exponent. This
results in a plot that linearly represents the curve fit described
by Eq. 3. The same effects described previously are clearly
visible in this data.

One exception to the quality of fit is the moderate number of
scattered points that appear in the lower right of the rightmost
plot. Recoloring these points by their raw absolute distance,
as in Fig. 4, demonstrates that though these are predominantly
points that, despite having very small perpendicular separation
distances, have large separation distances in the direction of
cloud motion. The lagged correlation of these points remains
much lower than would be expected for frozen advection. This
implies that for large spatial distances, the cloud-advection
is not truly frozen and highlights the fact that both cloud-
advection and uncorrelated noise components play some role
in the overall spatiotemporal variability.

Results for multiple test sites are shown in the other parts
of Fig. 5. The best performing cases are ALD highly variable,



Fig. 3. Dependence of correlation on separation distance and timescale as in [2] for ALD, Aug. 12, 2015 from 08:00 through 16:00. left) correlation at zero
lag and absolute distance, center) maximum correlation at any lag and absolute distance, right) maximum correlation at any lag and distance perpendicular to
cloud motion. All plots are colored by the distance perpendicular to the cloud motion direction. Dotted line is correlation as proposed by Lave et al.

Fig. 4. Data from the rightmost panel of Fig. 5a, colorized to show the
absolute pair separation distance.

VAR variable and MEL (a, c and e). All three cases show
a clear increase in the correlation between short timescale
modes when allowing for lag (as in the center column). The
improvement provided by utilizing the model based on Eq.
3 is also evident in the right column of these plots. Less
benefit is seen when considering ALD variable, VAR highly
variable and JUL cases (b, d and f). For all three of these
cases with lesser performance, we do observe that tracking
the peak lagging correlation does increase the overall level of
correlation, pushing the points toward the upper left of the
plot in the central column. The predominant difference seen
for these cases is the degree to which points with a large
perpendicular separation distance are also shifted to the upper
left, implying that the correlation is stronger than expected at
greater separation distances perpendicular to the cloud motion.
These points experience less shifting when switching to the
modified form of the equation, as they correspond to points
whose absolute and perpendicular separation distances are
similar. Points with short perpendicular separation distances
are in fact shifted closer to alignment with the x = y predicted
line.

To actually quantify the suitability of the modified model,

TABLE I
QUALITY OF FIT FOR EACH CASE.

Site Day Cloud Spd. Base Peak Lag Modified
(m/s) ρ ρ Model ρ

ALD HV 8.5 0.976 0.934 0.964
ALD V 30.4 0.899 0.870 0.825
VAR HV 40.7 0.884 0.725 0.750
VAR V 10 0.981 0.958 0.985
MEL Sept 8 19.5 0.967 0.928 0.955
JUL May 15 17.8 0.932 0.887 0.889

the quality of the best-fit line between the model and the data
points can be computed for each of the plots. These results
are shown in Table I. For each case except ALD variable,
switching to the modified distance measurement improves
our ability to predict the correlation between site pairs when
allowing for lag. As seen in the table, the cases with the
best performance corresponded to those with the lowest cloud
motion speeds.

V. CONCLUSION

This study demonstrates that when considering separated
site-pair correlations, the use of a lagging cross correlation
can improve discrimination of the variability induced by
advection from that introduced by ”noise” in the cloud field.
Accounting for the lagging correlation increases the level
of measured correlation between wavelet modes, particularly
for sites whose time series are closely related by virtue of
lying parallel to the cloud motion direction. The analysis
demonstrated that the empirical model proposed previously
by Lave et al. [2] better fits the lagging correlation when
scaling by the perpendicular separation between sites relative
to the cloud motion, rather than the absolute distance. This
confirms that the uncorrelated ”noise” in the wavelet modes
is more significant in the direction perpendicular to the cloud
motion, and frozen advection is important along the direction
of cloud motion. In the test cases considered here, performance
of this modified model was better for conditions with slower
cloud motion speeds. Further studies are warranted to further
investigate the use of this modified distance measurement and
to incorporate discrimination of advection- and randomness-



induced variability into models of the smoothing of plant
power generation time series.
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[12] S. Pelland, A. Gagné, M. A. Allam, D. Turcotte, and N. Ninad,
“Spatiotemporal Interpolation of High Frequency Irradiance Data for
Inverter Testing,” in 2021 IEEE 48th Photovoltaic Specialists Conference
(PVSC), Jun. 2021, pp. 0211–0218, iSSN: 0160-8371.

[13] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J.
van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J.
Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, I. Polat, Y. Feng,
E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman,
I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H.
Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors,

“SciPy 1.0: fundamental algorithms for scientific computing in Python,”
Nature Methods, vol. 17, no. 3, pp. 261–272, Mar. 2020.
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Fig. 5. Similar to Fig. 3, but with linearized scaling on the x-axis. left col) correlation at zero lag and absolute distance, center col) maximum correlation at
any lag and absolute distance, right col) maximum correlation at any lag and distance perpendicular to cloud motion. Rows show the different test sites: a)
ALD, Highly Variable (same as Fig. 3). b) ALD, Variable. c) VAR, Highly Variable. d) VAR, Variable. e) MEL, Sept 8, 2013 09:00-13:00. f) JUL, May 15,
2013 09:00-15:00


