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Abstract—Spatiotemporal aggregation of solar irradiance oc-
curs when a spatially distributed receiver (e.g. a PV generation
facility) collects variable, geographically distributed irradiance
and reduces it to a single electrical generation output. Models of
this phenomenon exist and are designed to take variability from
a single point irradiance monitor and predict how that variability
will be reduced by aggregation. We have applied these models in
reverse to assess whether the same models can be used to predict
the variability of a single point measurement given an aggregate
irradiance time series as an input. Results for an advection-based
model show that this approach leads to overprediction of the
high frequency variability due to overprediction of the site-to-site
correlation, even during highly correlated advection conditions.
While some modifications to the cloud advection model improve
its performance, the wavelet variability model better represents
the site pair decorrelation and produces superior results in
representing the disaggregated time series and variability metrics.
Further work may be warranted to further improve upon these
efforts and enable reliable, transfer function-based downscaling
of irradiance data.

Index Terms—variability, spatial aggregation, wavelet variabil-
ity model, transfer function, downscaling

I. INTRODUCTION

Spatiotemporal variability of solar irradiance and its char-
acterization are well studied in the literature [1], [2]. It is
important to have a good understanding of variability for
both photovoltaic (PV) plant management and transmission
grid operation, in order to anticipate and handle short term
ramp events in power generation. One specific aspect of
spatiotemporal variability that has been studied in the literature
is modeling how variability of a single point sensor is reduced
by the aggregation effect, since irradiance is actually received
by a spatially distributed plant [3]–[5].

Variability in irradiance may result from several root phe-
nomena. Variability induced by clouds occurs on a variety of
timescales and due to its stochastic nature, may be more diffi-
cult to model and anticipate than other sources of variability.
The Cloud Advection Model (CAM) of Ranalli et al. [5], [6]
uses a transfer function to represent aggregation of irradiance
during conditions when clouds pass over a plant without
evolving in time. The CAM showed better performance than
other models for representing spatial aggregation of irradiance
during highly correlated, cloud advection dominated condi-
tions. Its performance declined relative to other models, such
as the wavelet variability model (WVM) [7], as larger plants

with a higher degree of spatial decorrelation were considered
[5].

In this study, we consider the possibility of performing
the reverse aggregation operation: predicting the downscaled
irradiance time series of a single point reference site based
on an spatially aggregated irradiance input. In principle, the
CAM’s use of transfer functions to model the aggregation is
an easily reversible process. This is similar to the work by
Lave and Weekly who used an extrapolated transfer function
to generate a high frequency irradiance time series from low
resolution data [8]. The WVM can also be formulated for the
reversed problem. We will consider both the CAM and the
WVM here.

II. MODELS

In this section we will describe how both the CAM and
the WVM were formulated to solve the reverse aggregation
problem (disaggregation).

A. Cloud Advection Model

For a more detailed derivation of the CAM, readers may
consult the original references [5], [6], but a summary is
provided here. The CAM solves for the aggregation of a 1-
D plant subject to advection of a frozen cloud field over its
spatial extent. Irradiance at any given point within the spatial
distribution is assumed to be represented by a delayed version
of the irradiance at the reference site.

g(x, t) = gref (t− x

Vc
) (1)

The CAM utilizes a transfer function representation, which
casts the reference site irradiance as an input and the aggregate
plant irradiance as an output. Since the assumption of frozen
clouds leads to a convolution of the irradiance and the plant
as a representation of the aggregation, this transfer function
can be shown to be equivalent to the Fourier transform of the
plant’s 1-D spatial distribution, d∗.

TF (f) = F
[
d∗
(
x

Vc

)]
(2)

The original formulation of the CAM transfer function
considers the input to be the frequency representation of a



single site, Gref (f), and outputs the plant’s aggregated output,
P (f). This is shown by Eq. 3

TF (f) =
P (f)

Gref (f)
(3)

Given the reversible nature of the transfer function, in this
study, we compute the disaggregation by instead considering a
plant’s aggregated time signal to be the input. We compute the
transfer function of the distributed plant in the same way as
the original formulation, but predict the time series of a single
site as an output. This is done mathematically by solving Eq.
3 for Gref (f) and performing the inverse Fourier transform
to yield the single point irradiance time series, gref (t). This
leads to division by the modeled plant transfer function. The
single site irradiance can then be converted to clear sky index,
kc, by dividing by clear sky irradiance.

B. Wavelet Variability Model

Because each of the factors of the WVM is considered to
be stationary in time, it can essentially be considered to be
similar to a transfer function, despite not following an explicit
transfer function methodology. The WVM [3] splits a signal
into individual wavelet modes and scales them down by use
of a variability reduction factor (VR). To calculate VR, the
WVM relies on the correlations between individual site pairs,
which in turn depend on the wavelet mode’s time scale, the
cloud speed and the site pair separation distance [7], as in Eq.
4.

ρ = exp

(
− L

(Vc/2)∆t

)
(4)

The VR is defined as the average of these correlations for
all possible site pairs.

V R =
N2∑
ρi

(5)

In the original WVM formulation, each wavelet mode is
scaled down by dividing by the square root of VR to give
greater reduction of variability at higher frequencies.

wP (t) =
wref (t)√
V R

(6)

In order to reverse this process, we rearrange Eq. 6 such
that instead of dividing by

√
V R, we multiply, thus solving

for a reference site’s mode shape, wref , as a function of the
aggregate plant mode, wP . As in the original case, summing
over all the reference wavelet modes yields the prediction of
the reference site’s clear sky index index time signal [3].

III. RESULTS AND DISCUSSION

We have performed the downscaling calculation on a real
spatially distributed dataset to test the efficacy of these ap-
proaches. To match the initial use of the CAM, we chose
a subset of 9 sites from the HOPE-Melpitz measurement
campaign [9] aligned in an approximately linear direction (i.e.
a 1-D plant distribution). We selected a one hour window

during which strong cloud advection was observed. We used
the output of the aggregated linear subset of sites as an input
to the models and compared the results for a centrally located
single reference site. The central position of the reference is
important for the WVM, which does not intrinsically account
for time lag in the signals. Details of the 9 sites chosen and
their location within the site are provided in [6].

A. Metrics

To quantify the performance of the two models at rep-
resenting the downscaled time series, we considered several
metrics, particularly focused on those related to variability.
We computed the power spectral density (PSD) of the known
reference vs. modeled time series and compared visually using
plots. We computed the root mean square error (RMSE) for
the clear sky index time series compared between the single
site reference and the model output. We also used the common
variability metrics [2] of variability index, variability score and
standard deviation of ramp rates .

Variability Index (VI) is defined as the ratio between the
path length of the actual irradiance curve and the clear
sky irradiance curve [10]. In computing the path length, it
measures a change in irradiance or ramp rate, RR, over a
time increment, ∆t, which is measured in minutes. For this
study, VI was only computed for a ∆t equal to the sampling
period of the data of 1 second.

V I =

∑√
RR2 + ∆t2∑√
RR2

clear + ∆t2
(7)

Variability Score (VS) is a measure based on the maximum
value of the product of a ramp rate magnitude, RRi, and the
probability of occurrence of said ramp rate. The variability
score is normalized by the STC irradiance (1000 W/m2) and
multiplied by 100 for scaling [11]. In the results we compute
VS using ∆t equal to 5 seconds, 30 seconds and 60 seconds.
Temporal averaging was used to produce time series with the
appropriate resolution to compute ramp rates at these intervals.

V S∆t = 100×max [RRi × P (|RR| > RRi)] (8)

Finally, the standard deviation of clear sky index ramps,
σ (∆kc∆t

), was computed for variable ∆t. For the purposes
of computing this metric, a raw difference (i.e. no averaging)
was used to compute the clear sky index ramps.

B. Results

The predicted aggregation transfer function for the CAM
based on the 9 site plant is shown in Fig. 1. The transfer
function is an overall low-pass filter with some dynamics
that allow some bands of high frequency content to pass.
Dividing by this transfer function will therefore result in an
increase in the magnitude of the high frequencies, while the
low frequencies will remain approximately constant.

The results of the inverse (disaggregation) transformation
for both time series and standard deviation of ramp rates are
shown in Fig. 2. The result from the CAM shows a significant



Fig. 1. Predicted transfer function for the plant configuration during the 1 hour
window studied here. Several time scales corresponding to the frequencies are
labelled.

degree of high frequency content. This is visible both in the
time series, and the variability, which is significantly overpre-
dicted for small ∆t. The WVM exhibits a more realistic time
series than the CAM. In part, we attribute this difference to
the nature of the models. Because the CAM assumes perfect
correlation between sites at all frequencies, high frequency
pass dynamics are present as seen in Fig. 1. When dividing by
the transfer function, this results in substantial amplification of
the high frequencies, as seen in the power spectrum. Because
the WVM is based upon decorrelation between sites, and thus
exclusively suppresses high frequency content, it appears to
do a better job of creating a realistic time series. This is also
reflected by the WVM’s much closer match to the target value
on most of the variability metrics as seen in Table I. The WVM
performs reasonably well at predicting the time series and the
variability according to these metrics. At high frequency (i.e.
the VI and the VS for a 5 second ∆t), the CAM seriously
overpredicts the variability. The CAM’s performance improves
at lower frequencies (i.e. VS for 30 second and 60 second time
scales).

One interesting factor revealed in the PSD plot in Fig. 2 is
that the CAM matches the PSD better in the band from roughly

Fig. 2. Disaggregation calculation time series, power spectrum and variability
for 9 sites disaggregated to a single reference. Spectra are smoothed using 8
averages with a Hanning window and 50% overlap.

TABLE I
VARIABILITY METRICS FOR MODELING THE SPATIAL DISAGGREGATION.

Metric Agg. Target CAM WVM
RMSE - - 0.184 0.133

VI 103.6 274.6 2365.8 385.2
VS5 0.37 1.01 3.40 1.07

VS30 1.38 2.52 2.75 2.01
VS60 2.53 3.31 2.99 3.46



TABLE II
VARIABILITY METRICS FOR MODIFIED CAM. TARGET AND WVM

RESULTS ARE UNCHANGED.

Metric Agg. Target CAM WVM
RMSE - - 0.157 0.133

VI 103.6 274.6 496.9 385.2
VS5 0.37 1.01 1.63 1.07

VS30 1.38 2.52 2.72 2.01
VS60 2.53 3.31 3.07 3.46

0.01-0.04 Hz. This corresponds to the low magnitude band
in the CAM transfer function following the initial frequency
cutoff (see Fig. 1). This reduction in magnitude is associated
with spatial interference phenomena and only occurs when
considering high site-to-site coherence due to cloud advection
[5], [6], which is not described by the WVM formulation.

We demonstrate one possible improvement on the CAM
disaggregation calculation by limiting amplification of high
frequency portions of the input, where we would expect site
pair correlation to decline. The CAM’s broadly elevated power
spectrum magnitude beyond about 0.2 Hz contributes to the
undesirable oscillating signal in the time series. So for these
high frequency cases, we considered replacing the predicted
disaggregated power spectrum values with those of the ag-
gregate power spectrum (i.e. the input) based on a threshold
on the aggregate power spectrum magnitude (magnitude less
than 0.4 in this demonstration). This attempts to correct for
the fact that uncorrelated parts of the signal are present at
high frequencies in the power spectrum, and the assumption of
correlation (coherence) inherent to the CAM transfer function
approach is violated. The results of this simple correction
are shown in Fig. 3. As is evident, this correction removes
the high frequency oscillations and creates a somewhat more
realistic time series. The PSD is also more realistic, but
the CAM’s standard deviation variability metric is reduced
below the target values, except at very low frequencies, where
variability is overpredicted. The WVM results remain the same
as for the previous comparison. The CAM results at high
frequency are improved substantially by suppressing the high
frequency, uncorrelated content, as shown by the metrics in
Table II, though the CAM continues to consistently overpredict
when compared to the target values. We observe that the
performance of the WVM remains superior to the modified
CAM for most metrics.

To further investigate these results, we considered the prob-
ability density of the clear sky index ramp rates during this
one hour window at the 5, 30 and 60 second ramp intervals,
as shown in Fig. 4. As observed by other investigators [12],
the peak probability occurs for a zero ramp event and falls off
for increasing ramp magnitudes. Comparing the actual input
and output measurement data (i.e. real aggregate vs. single
site) we observe that at the 5 secont time scale, the large
ramps are significantly suppressed by the aggregate case, but
are present in the single site measurement. When comparing
with the models, the WVM performs better than the CAM.
The WVM slightly overpredicts the frequency of moderate

Fig. 3. Disaggregation calculation time series, power spectrum and variability
for 9 sites disaggregated to a single reference, with the low-power-spectrum-
magnitude correction applied to the CAM. Spectra are smoothed using 8
averages with a Hanning window and 50% overlap.



ramp events, while providing a more accurate prediction of
the frequency of the largest ramp events. Despite reducing its
high frequency power spectral density to match the aggregate
case, the modified CAM still overpredicts the frequency of
all magnitudes of ramp events at this 5 second timescale,
leading to underprediction of frequency of the zero ramp
case. When considering 30 and 60 second ramp rates (i.e.
lower frequencies), we see that the difference between the
aggregated and single site distributions is not as significant. We
also see that the results of the two models are more closely
comparable, as was evidenced by the numerical metric data
discussed previously.

One possible interpretation of the superiority of the WVM
results at high frequency follows from understanding the
different formulations between the two models. By assuming
advection of frozen clouds, the CAM represents perfect corre-
lation between all site pairs (when accounting for delay). The
CAM model’s predicted transfer function shape can be thought
of as arising from interference patterns that occur as a result
of the delayed irradiance reaching different locations within
the plant at different instants. That is, at certain frequencies,
these delayed oscillations will occur in- or out-of-phase, and
will constructively or destructively interfere when integrating
over the plant. However, as described by Ranalli and Peerlings
[5], the coherence in the real data falls off significantly with
increasing frequency. This results from the presence of uncor-
related high frequency components of the signal, which can be
interpreted to show that at their smallest length scales, clouds
can not be assumed to advect across the plant in a frozen
manner. When performing the inverse transform operation
(dividing by the transfer function), these high frequencies are
not as highly correlated as the CAM assumes, and thus they are
amplified in an unrealistic manner. The WVM, which assumes
a degree of decorrelation between sites (particularly so at high
frequencies) is more resilient to this problem and is not as
susceptible to the artificial magnificiation of uncorrelated high
frequency content.

Given the results for the 1-D plant configuration, we also
investigated performance for a somewhat more general plant
distribution. We applied the WVM to four separate one-hour
periods using the entire 2-D field from the HOPE-Melpitz
campaign as the aggregate plant. Results for this calculation
are shown in Fig. 5. Identification of the cloud motion vectors
for these cases used a form of the cross spectral analysis
method described by Jamaly and Kleissl [13]. This method
computes a cloud motion vector by varying the vector’s
direction in order to minimize the variance in the distribution
of all pairwise velocities. Each pairwise velocity is computed
using site pair separation and the lag at which maximum cross
correlation in the clear sky index time series occurs. Once the
vector is identified, the median of the velocity distribution is
used as the cloud speed. We adopted the quality control of
Jamaly and Kleissl [13] for this process, but also added a low
limit on clear sky index to eliminate overcast conditions. Full
details of the cloud motion vector identification method are
provided in [5].

Fig. 4. Probability density of the clear sky index ramps for the modified
CAM and the WVM. From top to bottom, the three separate plots use ramp
rate increments of ∆t = 5 s, ∆t = 30 s and ∆t = 60 s.



Fig. 5. Comparison of the disaggregation for four separate one hour periods
with variable cloud speed and direction. Input measurement was based on
the entire set of site measurements from the HOPE-Melpitz campaign. Left
column shows the plant configuration along with the cloud motion vector in
blue. Right column shows the power spectral density.

The WVM does a reasonable job at representing the disag-
gregated power spectrum for the variable cloud motion speeds
and directions investigated. While the CAM also predicts the
rough overall shape of the power spectrum, it substantially
overpredicts the variability, particularly at high frequency1.
Comparisons of the accuracy of the models based on the
variability metrics considered previously are given in Table III.
As before, the CAM significantly overpredicts the variability
for metrics that capture high frequency behavior, but produces
reasonable results for lower frequencies. The WVM seems to
provide a more reasonable representation of the variability in
the time series for the metrics.

1Use of the modified CAM described previously would require manual
tuning of the magnitude threshold, thus the results shown here are for the
unmodified CAM.

IV. CONCLUSION

While this demonstration does show the possibility of using
transfer functions derived from the cloud advection model
(CAM) for disaggregation, results indicate that the technique
leads to some degree of undesirable amplification of uncor-
related high frequency content, due to a failed assumption
of site-pair correlation at high frequencies. The wavelet vari-
ability model (WVM) can also be modified to compute the
spatial disaggregation operation and was applied to produce a
prediction of a disaggregated time series. The WVM’s basis
on decorrelation between site-pairs helps to suppress the am-
plification of uncorrelated parts of the signal that was observed
for the CAM. The results for the WVM on several variability
metrics were uniformly superior to those for the CAM. This
is true even for the 1-D case where coherent advection would
be expected to be a dominant factor, and where the CAM
showed superior performance in previous studies dealing with
the ”ordinary” aggregation modeling approach. The WVM’s
superior performance was even more evident when considering
plants with a larger cross-wind geographic distribution.

One important limitation to both of these approaches as
a downscaling methodology is that the results produced are
deterministic in nature. That is, for a given plant and reference
position within it, the disaggregated time series will always be
the same. It may be possible to marry one of these approaches
with other spatiotemporal variability downscaling techniques
that generate statistical representations of the time series in
order to incorporate a non-deterministic variability and to form
a more complete model.

We believe that this study demonstrates the possibility of
using a reversed form of spatial aggregation models (in par-
ticular the WVM) to disaggregate (that is, spatially downscale)
irradiance data from a spatial aggregate measurement to a
single site reference. That said, the validations performed in
this study were limited to one hour windows within a point-
cloud measurement data set. Further work remains necessary
to validate this approach for more generalized cases, includ-
ing continuously distributed plants, and to identify potential
pitfalls that may not have been observed in this preliminary
study.
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