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Solar generation facilities are inherently spatially distributed and therefore aggregate solar irradiance in both space and
time, smoothing its variability. To represent the spatiotemporal aggregation process, most existing studies focus on the
reduced correlation in solar irradiance throughout a plant’s spatial distribution. In this paper, we derived a cloud advec-
tion model that is instead based upon lagging correlations between upwind/downwind portions of a distributed plant,
induced by advection of a fixed cloud pattern over the plant. We use the model to calculate a plant transfer function
that can be used to predict the smoothing of the time series. The model was validated using the distributed HOPE-
Melpitz measurement dataset, which consisted of 50 solar irradiance sensors at 1 second temporal resolution over a 3
km by 2 km bounding area. The initial validation showed that the advection-based model outperforms other models
at predicting the smoothed irradiance time series during manually identified, advection dominated conditions. We also
conducted validation on the model against additional advection dominated periods in the data set that were identified
algorithmically. The cloud advection model’s performance compared well to models in literature, but performance
degraded slightly as larger cross-wind plant distributions were investigated. The results in this paper highlight the need
to incorporate advection effects on spatial aggregation during advection dominated conditions. Future development of
spatiotemporal aggregation models is needed to unify advective models with existing correlation reduction models and
to identify regimes where each dominate.

I. INTRODUCTION

Electricity generation by solar photovoltaics (PV) remains
an important part of a renewable energy based future for the
world, and plays a key role in many countries’ roadmaps to
mitigating climate change. PV relies on the incoming solar ir-
radiance as an energy resource, so PV generation reflects any
variability in the solar irradiance. Since PV generation is spa-
tially distributed within an environment, forecasts of solar ir-
radiance must be able to identify both the spatial and temporal
nature of this variability. While variability due to the daily so-
lar cycle is deterministic and can be accounted for, cloud- and
weather-induced variability is more difficult to describe and
forecast1. Nonetheless, forecasts are a critical element of grid
management and are necessary to enable electrical system op-
erators to prepare for ramping events. Thus, it is important to
develop better understanding of solar variability as the quan-
tity of grid-connected solar generation continues to increase2.

Though generation facilities are by nature spatially dis-
tributed, a site’s solar irradiance monitoring and reference
measurements are typically made by only a small number of
point sensors. It is well established in literature that the vari-
ability in solar irradiance is spatiotemporally smoothed by dis-
tributed collection facilities3. It would be cost prohibitive to
increase the number of sensors to monitor the spatiotemporal
variability, so there is a need to develop models that describe
how variability of a small number of point solar irradiance
measurements leads to the plant’s smoothed output variabil-
ity. PV generation takes many forms, from relatively local-
ized utility scale plants with rated capacities up to hundreds

a)Electronic mail: jar339@psu.edu

of megawatts, down to distributed rooftop PV installations as
small as a few kilowatts. Therefore, it is desirable for models
of aggregate variability to be flexible and able to accommo-
date a great variety of plant configurations.

II. BACKGROUND

There is a great deal of literature dealing with the spa-
tiotemporal variability in solar irradiance, as well as the ef-
fects of spatial aggregation on variability in particular. For a
starting point on the topic, readers may consider detailed re-
views of variability and variability reduction due to both spa-
tial and temporal aggregation, which are available from Perez
et al.4 and Lohmann1.

A common way to characterize variability is via the clear-
sky index, kc. Clear-sky index is defined as the ratio between
actual global horizontal irradiance (GHI), and GHI modeled
for a clear-sky condition. The clear-sky index eliminates the
effects of the diurnal cycle from the time series. It is typi-
cal to calculate increments (also termed "ramp rates") in the
clear-sky index time series, ∆kc. These ramp rates are com-
puted as the difference in clear-sky index over a certain time
interval, ∆t (also termed "time span" or "time lag" in litera-
ture). This is represented as the quantity, ∆kc∆t

4,5. Note that
it is important to distinguish between the time interval used to
calculate the ramp rate, ∆t, and temporal averaging of the time
series, which can also represented by a certain time period, τ .
The standard deviation, σ , of the ramp rate time series is then
used as a metric to represent the magnitude of variability as in
Perez et al4.

Variability = σ
(
∆kc∆t

)
(1)
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An additional quantity, termed the relative output variabil-
ity (ROV)3, may be used to characterize the degree to which
variability is reduced by spatial or temporal aggregation. ROV
is measured relative to some reference, often the variability of
a single point measurement.

ROV =
σ
(
∆kc∆t

)
actual

σ
(
∆kc∆t

)
re f erence

(2)

A. Characterizing Variability

Various studies have applied the standard deviation of clear
sky ramp rates and the relative output variability metrics to
characterize variability. In general, studies show that longer
time intervals correspond to larger ramp rates and higher vari-
ability (i.e. it is more probable to observe a large change in
clear-sky index over a one hour interval than over a one sec-
ond interval)5,6. Studies also observe that longer temporal
averaging periods lead to reduction in variability for a fixed
time interval5. This may be exacerbated when considering PV
power production rather than solar irradiance, because short-
time scale excursions may result in inverter clipping, but are
hidden in averaged solar irradiance time series. This leads to
an overprediction bias in simulations that rely on coarse tem-
poral resolution (e.g. hourly) data7,8. Studies have also used
schemes to classify high- and low-variability time periods us-
ing variability metrics based on both the clear-sky index9 and
direct solar irradiance10.

The spatiotemporal nature of variability has been character-
ized by a number of studies. Chiefly, attempts have been made
to understand time series correlations between pairs of sites
and descriptions of variability are framed within that context.
It has been proposed that any correlation between site pairs
is primarily the result of shared cloud cover3. It is generally
well known that correlation between individual site pairs de-
creases with increasing site separation. Many studies have
observed anisotropic correlation effects in the along-wind and
cross-wind directions11,12, which highlights the importance of
cloud transport (advection) in determining the relationship be-
tween sites. Models have been developed to attempt to predict
the degree of correlation between these site pairs, including
anisotropic effects13,14. Some of these studies have explicitly
noted the importance of accounting for delayed cross correla-
tion, which is observed to increase the pairwise correlation in
the along-wind direction11,13. One study by Al-Hilfi et al.15

directly compares the results from several of the published
spatiotemporal correlation models. Using a slightly different
approach, Klima et al.16 describe the variability using power
spectral density of the time series, and observe that larger
plants have a steeper drop off in spectral density, leading to
a greater smoothing effect at high frequency (i.e. short time
scales).

Efforts to characterize spatiotemporal variability can nat-
urally be extended to the closely related tasks of spatially
interpolating a sparse solar irradiance distribution (or an ir-
regular distribution) and forecasting the spatial solar irradi-
ance. Several different types of approaches have been used

for these tasks. Lipperheide et al.17 utilize persistence of a
known distribution of power production with respect to cloud
advection to forecast future production for a plant. Simi-
lar assumptions about advection were used by Wang et al.2

to compute limits on the possible ramp rates that a plant
could experience. Some studies have demonstrated various
techniques for downscaling/interpolating solar irradiance, in-
cluding by using kriging18. Kriging that includes tempo-
ral information has also been used for forecast purposes, in-
cluding the effects of cloud movement19,20. Trained neu-
ral networks have also been demonstrated for spatial fore-
cast purposes21. Other approaches have looked at generating
representative spatially distributed solar irradiance data using
statistical techniques22,23, a cupola24 and simulation of cloud
fields14,25,26.

B. Modeling Aggregation

The studies that are most relevant to the present work are
those that attempt to model the reduction in variability in-
duced by spatial aggregation. An early attempt at this was
that by Hoff and Perez3, who utilized a combined model that
considered the transition between cloud advection-dominated
conditions and spatially decorrelated conditions in describing
reduction in variability. By advection dominated conditions,
we mean those for which a constant cloud speed and direction
(i.e. relatively short time windows) lead to a very high spa-
tial correlation across a plant when accounting for time lag.
Hoff and Perez defined the dispersion factor, D, to distinguish
these variability regimes based on the geographic density of
the plant distribution. The dispersion factor is defined as the
ratio of the plant’s overall length, L, to the product of cloud
transit velocity, Vc, and the sampling period of the measure-
ment, tsamp.

D =
L

Vc · tsamp
(3)

One limitation of the Hoff et al.3 approach, as noted by the
authors, was that it did not generalize for arbitrary distribu-
tions of generation, but instead limited itself to a uniformly
distributed plant. Other approaches also leveraged the concept
of determining variability reduction by loss of correlation in
distributed site pairs, including those by Lave et al.27, Widen
et al.28 and Elsinga29. Further work by Al-Hilfi et al.30 uti-
lized a combination of models to improve the overall model
accuracy.

The wavelet variability model (WVM) by Lave et al.27 is
a broadly validated model31 and benefits from the availability
of software implementations, such as that in pvlib-python32.
This model represents an arbitrarily distributed plant as a se-
ries of discretized points. In order to represent the geographic
smoothing, it selectively filters the clear-sky index time se-
ries of a central reference node at different wavelet modes (es-
sentially frequency bands). The WVM relies on the modeled
pairwise correlation coefficients between the discrete sites, ρ ,
which in turn depend on the site separation distances, L, the
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cloud speed and the time interval, which in this case corre-
sponds to the wavelet scale33.

ρ = exp
(
− L
(Vc/2)∆t

)
(4)

The WVM scales the magnitude of each wavelet mode us-
ing a variability reduction index that is based on the sum of all
possible pairwise correlation coefficients, as in Eq. 5. Cloud
speed can be assumed to remain approximately constant rela-
tive to seconds- or minutes-scale variability (e.g. 3-hour cloud
speed data was used by Lave and Kleissl33). Thus, because
the site pair spacing is constant, the scaling described by the
WVM is essentially fixed in time.

wP(t) =
wre f (t)√

N2

ρsum

(5)

A different approach by Marcos et al.34,35 represents the
smoothing effect of a plant as a transfer function relative to
a single measurement point input. The transfer function is
empirically derived, and is based on the form of a single pole
low pass filter. The cutoff frequency was found to depend on
the size of the plant in hectares. As such, does not account for
short-term changes to the cloud speed, but instead is tuned for
long term variability. The model was validated against several
metrics of long-term variability with success.

The existing models leave a gap in knowledge regarding
spatial aggregation of solar irradiance. Hoff and Perez3 de-
scribe a continuum of conditions that can be observed in site-
pair correlations, beginning with high site-to-site correlation
due to frozen cloud advection and extending to full decorrela-
tion between site pairs. Both the WVM and Marcos et al.35 ap-
proaches are well validated for representing long-term trends
in variability, but are unable to resolve the role of cloud advec-
tion on short time scales. However, several possible charac-
teristics of variability that are described in literature suggest
that cloud advection plays a role. For example, in a valida-
tion of the WVM, Dyreson et al.31 note that the WVM pre-
dicts lower variability on short timescales (high frequency)
than that observed in actual data. One possible explanation
for this is that the WVM may be under predicting site-pair
correlation, which is enhanced during cloud advection. Addi-
tionally, some studies11,29 observe anti-correlation in time se-
ries at certain along-wind site-pair distances, which is sugges-
tive of a condition where periodically advecting clouds could
cause sites to appear to vary in an out-of-phase manner.

In the present study, we attempt to determine whether cloud
advection plays a role in real examples of spatial aggrega-
tion of irradiance and to describe how advection dominated
conditions affect variability. We derive a model that obeys
the physics of frozen cloud advection described by Hoff and
Perez3. Our model builds upon that by Hoff and Perez by rep-
resenting a generalized plant shape. We adopt transfer func-
tions (as suggested by Marcos et al.34) as a useful method to
describe the frequency dependence of the smoothing of vari-
ability.

FIG. 1. Sketch of the shading effect as a cloud advects over a dis-
tributed plant between two instants in time. Aggregation refers to
the plant summing up the distributed irradiance. The portion of the
plant shown in red represents a reference measurement made at the
upwind edge of the plant.

III. CLOUD ADVECTION MODEL FORMULATION

The following model development was first presented in a
conference paper36, but is reproduced here for completeness.
The fundamental basis for this model is the assumption of
frozen clouds that advect across distributed plant3 at a con-
stant speed. A sketch of this behavior is shown in Fig. 1.
For these purposes, advection is considered to be a 1-D ef-
fect; at any instant, clouds are all transported at a fixed rate,
in a fixed direction, and do not evolve with time. The plant
is represented as one-dimensional in space, which essentially
assumes that the clouds move in a uniform front perpendic-
ular to the direction of their motion. Through the following
derivation we will construct a representation of the variability
of the 1-D distributed plant relative to that of a single point
reference measurement.

We define the localized density of generation per unit dis-
tance as d(x). Thus, the time series for the plant’s aggregate
solar irradiance, p(t), is the product of this distribution and
the local solar irradiance, g(x, t), integrated over the plant’s
spatial extent, X :

p(t) =
∫

X
d(x) ·g(x, t)dx (6)

For 1-D advection of frozen clouds at a fixed speed, we rec-
ognize that the spatial variation of solar irradiance is actually
based upon delay; any clouds that affect irradiance at the ref-
erence point have the same effect at each other location during
their transit. In this case, solar irradiance at any point in the
1-D domain can be described as the solar irradiance at the
reference point, delayed (or advanced) by an advective time,
τd = x

Vc
. This assumes that the clear sky irradiance is approx-

imately constant, necessitating that the transit time across the
plant be relatively short. With these assumptions, the spatially
distributed solar irradiance becomes:

g(x, t) = gre f (t −
x

Vc
) (7)

The spatial coordinate, x, can be replaced by the delay co-
ordinate, so that we rewrite the plant distribution as d∗(τd).
Note that d∗(τd) should be normalized to have an integral of
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1 so that the transfer function has a magnitude of 1 at zero
frequency.

When substituting d∗(τd), the aggregate plant solar irradi-
ance becomes the convolution of the delayed solar irradiance
with the plant28:

p(t) =
∫

X
Vc

d∗(τd) ·gre f (t − τd)dτd (8)

Following the approach of Marcos et al.34, we represent the
aggregation using a transfer function, T F , between the ref-
erence site solar irradiance and that of the plant. A transfer
function is a common, frequency dependent representation of
a system as a response (output) to a given input. In this case,
the output is the plant’s aggregated irradiance, P, while the
input is the single point reference measurement, Gre f , leading
to the transfer function relationship given by Eq. 9.

T F( f ) =
P( f )

Gre f ( f )
(9)

Because time domain convolution is equivalent to fre-
quency domain multiplication, the transfer function simply
reduces to the Fourier transform of the plant’s spatial distri-
bution:

T F( f ) =
D∗( f ) ·Gre f ( f )

Gre f ( f )
= D∗( f ) = F

[
d∗
(

x
Vc

)]
(10)

The position of the reference sensor within the plant dis-
tribution can be accounted for by adding or subtracting time
delay from the transfer function, based on the cloud transit
time from the upwind edge of the plant to the reference sen-
sor. Mathematically, this operation consists of rotating the
phase of the transfer function by an angle proportional to the
frequency as in Eq. 11. Note that for a non-uniform plant,
the effective center of the plant is basically aligned with the
centroid of the distribution d(x)37.

T Frot = T F · exp
(

2πi f
∆x
Vc

)
(11)

This formulation allows computation of the transfer func-
tion based only on the plant’s 1-D spatial distribution and the
cloud speed. Thus, for a given plant and cloud speed condi-
tion, we could compute a predicted P( f ) and use the inverse
Fourier transform to compute the plant’s aggregate time se-
ries, p(t).

A. Calculation Overview

The steps required to compute the smoothed time series us-
ing the transfer function are summarized here.

1. Computing the Plant Transfer Function

1. Gather the input data:

• Cloud speed and direction.

• Plant layout including reference location.

2. Represent plant distribution as a numerical 1-D array,
d∗(τd), in the cloud motion direction.

3. Normalize to ensure that d∗(τd) has an integral of 1.

4. Compute the Fast Fourier Transform (FFT) of d∗(τd) to
obtain T F( f ).

• If necessary, first pad d∗(τd) with trailing zeros to
increase frequency resolution.

5. Apply Eq. 11 to account for position of the reference
within the plant, yielding T Frot( f ).

2. Computing a Smoothed Time Series

1. Perform FFT on the reference time series to obtain
Gre f ( f ).

2. Multiply Gre f ( f ) by the transfer function, T Frot( f ), to
obtain filtered output, P( f ).

• Interpolation may be necessary to ensure that both
frequency axes match. Use care, because both
quantities are complex numbers.

3. Perform inverse FFT to yield the filtered irradiance time
series, p(t).

4. If desired, divide by the clear sky irradiance to compute
kc(t).

B. Model Results for Simplified Case

It may be instructive to first consider a simple case to high-
light the model’s behavior. For example, we may consider
the smoothing caused by a uniformly distributed 1-D plant of
length Lp, relative to a sensor placed at its upwind edge. This
plant can be thought of numerically as an array of numbers,
having the value of 1 within the plant footprint and zero else-
where:

d∗(τd) =

{
1 0 ≤ x ≤ Lp
0 x > Lp

(12)

The transfer function for this distribution (i.e. its FFT) cor-
responds to a sinc filter, as seen in Fig. 2. We may learn a few
basic facts about the way that this model behaves in general
by inspection of the figure for this simple case.
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FIG. 2. Modeled transfer function for uniformly distributed plant.
Frequency axis scaled to Strouhal number.

1. Magnitude Response

Overall, the transfer function magnitude decreases with in-
creasing Strouhal number: St = f Lp

Vc
. Specifically, it decreases

in proportion to 1
St , representing a low-pass filter character,

which agrees with the smoothing we expect to observe. The
Strouhal number is similar to the dispersion factor discussed
by Hoff and Perez3. However, one major difference is that
here we use the length scale, Lp, to represent the entire size of
the plant, rather than the plant density as in Hoff and Perez.

We also observe that the transfer function experiences peri-
odic zero magnitude values, which correspond to integer val-
ues of the Strouhal number. Physically, the zero magnitude
events visible in the transfer function reflect conditions where
spatial destructive interference causes a zero net oscillating
response for the whole plant. In the case of the first such
occurrence, the cloud spacing is equivalent to the plant size,
mathematically describing a sinusoidal distribution over the
plant that is half cloudy, half clear. If we view the plant as
upwind and downwind halves, they experience out-of-phase
oscillations and together sum to zero.

2. Phase Response

The phase of the transfer function exhibits rapid phase
shifts of 180◦ that occur at integer values of the Strouhal num-
ber, corresponding to zero-magnitude values. The dominant
characteristic of the phase is a linear decline, indicating time
delay. This is expected in that the "average" plant response
occurs as a cloud passes over the center of the plant, while
the reference input in this example was located on the upwind
edge. The shift applied in Eq. 11 changes the amount of delay
and effectively moves the reference site relative to the plant.
This allows the model to account for a reference that is located
anywhere.

C. Model Description Summary

In summary, the cloud advection model predicts a low-pass
filter with time delay, which is consistent with the smoothing
of spatiotemporal variability. The dynamic interference-like
phenomena described in Sec. III B 1 occur in this model as
an artifact of advection, and would not be expected to occur
for correlation-based models of variability. In order to deter-
mine whether advection is important in real irradiance data,
we will apply the model against a real measurement dataset
and investigate these and other characteristics of the transfer
function.

IV. VALIDATION RESULTS AND DISCUSSION

In order to investigate the importance of advective effects
described by the model, we compared predictions of the trans-
fer function with real data transfer functions between a single
point measurement and a spatially distributed plant represen-
tation.

A. Dataset

We used data from the HOPE-Melpitz measurement
campaign38 to make this comparison. The HOPE-Melpitz
campaign was conducted outside of Melpitz, Germany.
Global horizontal irradiance (GHI) was measured by 50
single-point sensors. The sample rate was 1 Hz and measure-
ments lasted throughout the period from September 10-27,
2013. Some data was still available outside that period, but
not for all sites. The overall measurement site footprint was
approximately 3km in the longitude direction by 2km in the
latitude direction. A dense, central cluster of 26 stations had
a footprint of roughly 400m x 200m, with the remaining 24
stations more sparsely spaced in the larger bounding region.
A satellite image with the layout of the 50 point measurement
sites is shown in Fig. 3.

Uncertainty and quantization error pose a potential source
of error in interpreting the data. Madhavan et al. report over-
all uncertainties for the sensors of around 35-100 W/m2 for
the 1000 W/m2 full-scale measurement39. Though specific
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FIG. 3. HOPE-Melpitz measurement campaign site layout with 50
individual stations. Central station (ID number 40) is located at
51.52566◦N, 12.927199◦E.

bin size is not reported, the analog-to-digital conversion sys-
tem is reported by Madhavan et al. to have a resolution of
10 bits, which at full scale would correspond to a bin size
around 1 W/m2. Close inspection of the time series shows
that quantization is evident during relatively steady solar ir-
radiance conditions (e.g. cloud cover), and appears to have a
bin size around 1.5 W/m2. Thus, it is difficult to distinguish
actual variability of this magnitude from measurement noise
at high frequency.

B. One-dimensional Validation with Manually Identified
Advection

We first attempted to validate the model predictions against
a one-dimensional subset of measurement sites aligned with
cloud advection. We manually identified the period of
September 8, 2013 from 09:15 - 10:15AM from the time se-
ries. During this period, clouds were observed to advect in
a south-to-north direction. We selected a subset of measure-
ment sites aligned with the cloud motion and passing through
the center of the measurement footprint. One site (number 28)
was excluded due to the fact that its output was inconsistent
with advection. The advective speed was identified by com-
paring the lagging cross correlation between the aligned sites,
and a cloud velocity of 20 m/s from south to north was ob-
served. The time series for the selected subset of points are
shown in Fig. 4.

In order to apply the model, each of the sites’ positions was
projected onto the north-south direction, yielding the plant
distribution shown in Fig. 5. The modeled transfer function
for this distribution was calculated using the FFT, as described
in preceding sections.

To calculate the frequency representation of the real data,
the time series for each site were normalized to have the same
mean solar irradiance as the reference. The sites were then ag-
gregated to represent the plant and the time series were trans-
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FIG. 4. Individual site time series for the plant subset used in the 1-
D validation, demonstrating advection as identified via lag. The time
series for the site discarded for QC is labelled.

formed to the frequency domain by an FFT. The reference site
time series was also transformed by an FFT.

1. Power Spectra

The power spectral density (PSD), or power spectrum, can
be used to represent how the power contained by a time sig-
nal is split up among various frequency components. Fig. 6
shows the difference in power spectra between the reference
and aggregate plant time series. Compared to the reference,
the magnitude of the aggregate plant is significantly reduced
for frequencies corresponding to periods between roughly 5
seconds and 5 minutes. The overall decrease in power spec-
trum magnitude with increasing frequency is well described
in literature.The extremely low magnitudes observed beyond
roughly 0.1 Hz (10s period) are smaller than the overall bin
resolution of the data acquisition system and interpretation in
this range should be made with care due to the potential influ-
ence of quantization error, as described previously.

2. Transfer Functions

The transfer function between the reference site and the ag-
gregate plant was computed as the ratio between the aggre-
gate and reference frequency representations. We compared
the CAM predictions with the WVM by Lave et al.27 and the
model of Marcos et al.35 (subsequently referred to as the Mar-
cos model). The cutoff frequency of the Marcos model was
manually tuned to match the cutoff frequency of the actual
data, due to the fact that the analytical pole expression given
by Marcos et al.35 relies on a spatial area, which is not suit-
able for a 1-D plant distribution. The comparison of transfer
functions is shown in Fig. 7.

With reasonable accuracy, all 3 models predict the over-
all low-pass filter shape of the transfer function, along with
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FIG. 5. (top) Subset of points used for the one dimensional north-
south aligned case. The red points are projected perpendicularly onto
the north-south cloud transit direction, shown by the dotted line, to
form the plant distribution. (bottom) The plant distribution, d(x), for
the projected measurement sites. Because the single-point sensors
are infinitesimally small, the plant’s spatial distribution essentially
consists of a sum of Kronecker delta functions with each centered
at one of the highlighted measurement locations. As each sensor is
equivalent, the magnitude of the distribution is normalized.

the cutoff frequency. However, several unique features of the
data are predicted only by the cloud advection model (CAM).
Specifically, the magnitude rebound that occurs around a fre-
quency of 0.05 Hz is only predicted by the CAM. This dy-
namic feature is caused by spatial interference patterns associ-
ated with cloud motion over the plant, as described previously
in Sec. III B. Additionally, the real transfer function exhibits
complexities in the phase dynamics that are only predicted
to occur by the CAM. The phase of the WVM is essentially
constant, due to its implicit assumption of a centrally located
reference site. The Marcos model predicts the phase behavior
expected for its single-pole filter basis.

The match between the real data and the CAM’s predic-
tion worsens with increasing frequency (beginning around 0.1
Hz). This can be explained by considering the loss of coher-
ence in the real data transfer function. The sharp decline in
coherence beyond a frequency of around 0.1 Hz indicates that
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FIG. 6. Power spectra of the reference site and aggregate site sub-
set described in Fig. 5 for the selected time span described in Sec.
IV B. Power spectrum is scaled such that magnitude represents the
amplitude of oscillation at the given frequency. Note that frequency
resolution (effect visible e.g. at low frequencies) is limited by the 1
hour window. Spectra are smoothed using 8 averages with a Hanning
window and 50% overlap.

oscillations in the reference and aggregate plant signals are
no longer well correlated at these frequencies. This may in-
dicate a failure of the frozen clouds assumption on short time
and length scales, or it may indicate a source of uncorrelated
noise in the data. Due to the declining overall magnitude of
the power spectrum at these frequencies, it is difficult to dif-
ferentiate these effects with the present data.

We also apply the CAM to predict the smoothing of the
solar irradiance time series, including the effect of a variable
reference site position. Three time series predictions for refer-
ence sites situated on the north, south, and center of the distri-
bution are shown in Fig. 8. As expected, the spatial distribu-
tion of generation produces a smoothed time series relative to
the reference, which matches with the low-pass filter behavior
at play. As each case uses the same plant distribution, the ag-
gregate time series is exactly identical in each case. However,
the reference site time series is advanced or delayed relative to
the aggregate time series according to its upwind or downwind
position. The CAM is able to produce a reasonable approxi-
mation of the aggregate time series based on each of the three
reference site choices.

We may also consider how the transfer function changes
with changes in the plant layout. Fig. 9 shows transfer func-
tion results and model predictions for four separate plant con-
figurations. Changing the plant configuration substantially al-
ters the shape of the transfer function. Notably, a distribution
of the overall plant over a larger spatial extent creates a trans-
fer function with a lower cutoff frequency. This is consistent
with the Strouhal number scaling described in Sec. III B 1.
Besides the overall low-pass filter shape, each case in Fig. 9
exhibits different dynamic characteristics. The fact that these
changing dynamic characteristics are predicted by the CAM
but not the WVM and Marcos models suggests that these dy-
namics are a direct result of coherent cloud advection. Thus,
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FIG. 7. Transfer function for the reference and aggregate sites de-
scribed in Fig. 5, for the selected time span described in Sec. IV B.
Predicted transfer functions for several models are compared. Real
and WVM transfer functions are smoothed using 8 averages with a
Hanning window and 50% overlap.

TABLE I. RMSE of the clear-sky index time series relative to the real
aggregate data for the plant configurations shown in each row of Fig.
9.

Row CAM WVM Marcos
1 0.039 0.083 0.048
2 0.028 0.067 0.133
3 0.020 0.064 0.118
4 0.038 0.054 0.088

in order to accurately represent the smoothing of the time se-
ries, it is important to account for advection in this case.

The importance of advection is emphasized when consider-
ing the root mean square error (RMSEkc ) in the prediction of
the clear-sky index time series by each model, given in Table
I. The CAM produces a better prediction of the time series for
each of the four plant configurations.
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FIG. 8. Modeled and actual time series for three separate reference
sites. Cloud motion direction is south-to-north.

3. Variability

We also compared the ability of the model to predict vari-
ability according to traditional metrics, such as ∆kc and ROV .
Fig. 10 shows a comparison of these metrics for each of the
three models. Fig. 10 shows that the plant uniformly reduces
the variability for all time intervals. The CAM accurately rep-
resents this reduction for the each interval according to these
metrics. The WVM overpredicts the degree of variability re-
duction for this advection-dominated condition. The Marcos
model yields a comparable accuracy to the CAM, bearing in
mind the fact that the Marcos cutoff frequency was manually
adjusted to match that of the actual transfer function for this
data. While we can infer some information about the perfor-
mance of the CAM from these results, it is possible for multi-
ple time series representations to produce the same ramp rate
variance22,23. Thus, it is better to rely on the comparisons of
the transfer function or time series RMSE to compare model
performance, as in Section IV B 2.



Cloud Advection Model of Solar Irradiance Smoothing by Spatial Aggregation 9

��"� ��"� ��"�
���

��	

���

�
��
��
��
��
���
�

��
�

�� ��
�

�	
�

	�

��
���
��
�

��"� ��"� ��"�
���

��	

���

�
��
��
��
��
���
�

��
�

�� ��
�

�	
�

	�

��
���
��
�

��"� ��"� ��"�
���

��	

���

�
��
��
��
��
���
�

��
�

�� ��
�

�	
�

	�

��
���
��
�

��"� ��"� ��"�

�������� ��!�

���

��	

���

�
��
��
��
��
���
�

��
�

�� ��
�

�	
�

	�

���������

��
���
��
�

���� ��� ������ �
�

FIG. 9. Transfer function comparison for the various models with re-
spect to four separate variable plant configurations. Reference sites
selected for each case are highlighted in the left column. Real and
WVM transfer functions are smoothed using 8 averages with a Han-
ning window and 50% overlap.

C. Identifying Cloud Speed and Considering General
Advection

In addition to the manually identified advection-dominated
condition described in the previous sections, we wish to an-
alyze the performance of the model with respect to variable
cloud motion direction and speed. Methods are described in
literature for the identification of cloud motion from multi-
site datasets, such as the HOPE-Melpitz data used here. Cross
spectal analysis (CSA) is one example of a method for identi-
fying cloud motion vectors. It was first proposed by Inoue et
al.40 and Shinozaki et al.18 and was later modified by Jamaly
and Kleissl41. Another method, the cross-correlation method
(CCM), uses cross correlation between successive snapshots
of solar irradiance and was described in the literature by Ja-
maly and Kleissl41 and Espinoza-Gavira et al42. The CCM re-
quires either that measurement data be gridded or that kriging
(or a similar technique) be used to create a gridded dataset42.
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FIG. 10. Variability comparison between different model ap-
proaches.

As such, the modified form of the CSA described by Jamaly
and Kleissl41 is easier to apply to the present dataset, and was
adopted to compute the cloud motion vectors in a general way.

The CSA method consists of adjustment of the angle of
cloud motion such that it minimizes the variance in the cal-
culated velocities for each site pair. Velocity is calculated by
the ratio of the site separation, ri, and the time delay for which
the peak correlation between those two sites occurs, ∆Ti. For
the present scenario, where we wish to compute transfer func-
tions based on a single reference, we limit the pairwise veloc-
ity computation to site pairs containing the reference. As in
Jamaly and Kleissl41, we minimize the variance of the com-
puted velocity objective function Vvar, relative to the wind di-
rection as specified by the wind unit vector, v̂:

Vvar(v̂) = var
(
~ri · v̂
∆Ti

)
(13)

Once an optimum cloud unit vector is identified, we com-
pute the cloud speed as the median of the individual site
pair velocities. We implemented the CSA method for each
one-hour period within the full HOPE-Melpitz dataset. We
adopted the the quality control approaches proposed by Ja-
maly and Kleissl41 with a few modifications. We set maxlag
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to be the length of the time series and perform quality control
to eliminate unsuitable site-pairs. We then perform the opti-
mization on all remaining sites. We reject hours with kc < 0.4
as overcast conditions for which site-pair delay is unlikely to
yield useful cloud motion information. We also reject peri-
ods for which there is very little difference between the max-
imum pair correlation at zero lag and the maximum lagging
pair correlation, which helps to eliminate cases for which ∆Ti
is unreliable.

Once the cloud direction and speed have been computed,
we construct the plant distribution, d(x), by projecting site dis-
tance vectors onto the motion direction (~ri · v̂) for all sites that
passed quality control. This collapses the two dimensional
distribution of the plant into a one dimensional representation,
along the cloud advection direction. Transfer functions are
computed as discssed previously (refer to Section III A 1) and
comparisons are made with the transfer function described by
the real aggregate data.

In Fig. 11, we compare the transfer functions predicted by
the model for several different wind conditions identified us-
ing the CSA method. Note that we omit the Marcos model
from this comparison, due to the requirement for manual ad-
justment of the cutoff frequency. As in previous examples, the
transfer function always represents a low-pass filter. The high
frequency advective dynamics are present for some cases,
however, we observe that they are somewhat less significant
than in the purely one-dimensional case. The dampening of
these high frequency dynamics is caused by the denser spac-
ing of sites that occurs as they are projected onto the wind-
direction axis. The CAM provides a reasonable match for the
data, considering both cutoff frequency and the dynamic be-
haviors that are visible.

We also compare the transfer functions when including all
the available sites (i.e. even including those that failed quality
control). These results are shown in Fig. 12. Given that the
overall plant length is relatively constant in this case, we may
more clearly observe the relationship between wind speed and
the cutoff frequency of the transfer function. Higher wind
speeds correspond to higher cutoff frequencies and vice versa.
In general the inclusion of additional sites serves to dampen
the high frequency dynamics of the transfer function, both in
the real data and the model.

We also considered a few quantitative metrics to assess the
performance of the models. We calculated the root mean
square error (RMSEkc ) for the predictions of the clear-sky
index time series. Results for the four cases shown in Figs.
11 and 12 are given in Table II. The CAM outperforms the
WVM uniformly for the cases where we only consider the
sites that pass quality control, while the WVM has superior
performance when considering all measurement sites. This
is an indication of the failure of the uniform frozen turbulence
assumption that the CAM is based on. That is to say, the CAM
assumes that when accounting for advective delay, the clear-
sky index time series is stationary over the entire plant. The
WVM, which was developed specifically to model the decor-
relation between distributed sites, shows better performance
in this case. This may indicate that decorrelation becomes
more important than advection as a larger plant footprint is
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FIG. 11. Comparison of multiple cases for which the wind direc-
tion was identified systematically. Red sites are those that passed the
quality control for wind speed determination, and are the only sites
used to compute the transfer function. Arrows show the cloud mo-
tion direction. Real transfer functions are smoothed using 4 averages
with a Hanning window and 50% overlap.

TABLE II. RMSEkc for clear-sky index time series predictions.
Cases refer to the rows of Figs. 11 and 12.

CAM WVM CAM WVM
Case (QC only) (QC only) (all sites) (all sites)

A 0.020 0.028 0.036 0.031
B 0.025 0.038 0.043 0.035
C 0.070 0.125 0.082 0.061
D 0.031 0.062 0.053 0.038

considered, especially in the cross-wind direction.
In addition to the four specific cases shown previously, we

also consider the accuracy of the model across all possible
time periods that allow a successful application of the CSA.
In addition to computing the RMSE for all of these windows
(RMSEkc ), we also compute the RMSE of the model in pre-
dicting the transfer function cutoff frequency (measured at
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FIG. 12. Comparison of multiple cases for which the wind direc-
tion was identified systematically. Time windows are the same as in
Fig. 11. All sites are used in computation of the transfer function.
Arrows show the cloud motion direction. Real transfer functions are
smoothed using 4 averages with a Hanning window and 50% overlap.

50% of the low-frequency magnitude). We will label this
quantity as RMSE fc . These metrics are shown in Table III.
Results uniformly follow those for the preceding analysis: the
CAM performs better when limiting sites by quality control,
while the WVM performs better when considering all sites.
Scatter plots of the cutoff frequencies are also shown in Figs.
13 and 14. The CAM tends to overpredict the cutoff fre-
quency for both the quality controlled and all-site cases. The
WVM significantly underpredicts the cutoff frequency for the
quality controlled case, which is consistent with our previ-
ous observation that it underpredicts variability for advection-
dominated cases. On the other hand, the WVM performs bet-
ter than the CAM when considering all sites and produces bet-
ter estimates of the cutoff frequency for that case.

TABLE III. Cutoff frequency, clearness index RMSE metric and
clear-sky index time series correlation coefficient for all windows
for which it was possible to compute a cloud speed and direction.

CAM WVM CAM WVM
Metric (QC only) (QC only) (all sites) (all sites)

RMSE fc 0.0039 0.0061 0.0024 0.0011
RMSEkc 0.0371 0.0604 0.0677 0.0423
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FIG. 13. Comparison of transfer function cutoff frequency calculated
at 50% of base magnitude for all time windows that produced a valid
cloud velocity. Transfer function computed for only sites passing
quality control.

V. SUMMARY AND CONCLUSION

The cloud advection model was derived to describe the re-
duction of solar irradiance variability caused by spatial aggre-
gation of irradiance during cloud advection dominated condi-
tions. The model utilizes a transfer function based approach
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FIG. 14. Comparison of transfer function cutoff frequency calculated
at 50% of base magnitude for all time windows that produced a valid
cloud velocity. Transfer function computed for all Melpitz sites.
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to represent the aggregation. The model demonstrates that the
transfer function of a plant can be represented by the Fourier
Transform of the plant’s spatial distribution. The overall shape
of the plant transfer function was observed to be a low-pass
filter for all cases, in agreement with other models found in
literature. The critical frequencies of the low-pass filter are
characterized in part by the Strouhal number, related to plant
size and cloud speed.

We applied the model to real data in an attempt to deter-
mine whether advection played an important role in repre-
senting the variability and the spatial aggregation process. We
compared the model with data from the HOPE-Melpitz mea-
surement campaign. A manually identified, one-hour win-
dow that exhibited strong cloud advection was used as a test
case, and a subset of measurement sites were used to sim-
ulate a one-dimensional plant. The transfer functions pre-
dicted by the cloud advection model agreed quite well with
those of the actual data, revealing several important features.
The transfer function exhibited a characteristic low-pass filter
shape, though higher frequency dynamics were observed. The
higher frequency dynamics were consistent with spatial inter-
ference effects between the various measurement sites, and
which were unique to the cloud advection model. Varying the
subset of measurement sites chosen to represent the plant con-
firmed that the dynamic characteristics in the transfer function
are indeed associated with cloud advection. We confirmed the
ability of the transfer function aggregation approach to pro-
duce smoothed time series that correspond reasonably well
to the validation data. Accounting for delay in the transfer
function phase allowed a time series for the whole plant to be
produced using any individual reference site.

The ability of the cloud advection model to predict the value
of traditional variability metrics was also demonstrated for
the various cases discussed. The cloud advection model pro-
vides good prediction of the variability metrics for the one-
dimensional, advection dominated conditions. We observed
that the RMSE of the clear-sky index time series for the cloud
advection model was superior to the WVM and Marcos mod-
els for advection-dominated conditions. However, the tradi-
tional variance of ramp rate metric was unable to discriminate
between the cloud advection model and the Marcos model.
Thus, it may be valuable to consider other metrics, including
the transfer function, when comparing the quality of model
outputs.

While we have utilized short time windows during which
solar irradiance can be assumed to behave in a stationary man-
ner in this study, wavelet methods may also be a possible way
to account for the actual non-stationary nature of the solar ir-
radiance signals.

In addition to the highly simplified one-dimensional rep-
resentations, we demonstrated the ability of the model to be
applied to two-dimensional plants that experience cloud ad-
vection. When considering a quality controlled subset of the
plant, results were similar to those for the simplified one-
dimensional plants. In general, the two-dimensional plants
tend to dampen the impact of high frequency dynamics in the
transfer function. This is a result of the more tightly packed
plant distributions that arise from projecting a 2-D plant onto a

1-D distribution. This effect was even more evident when the
transfer function was computed using all the available sites in
the validation dataset, rather than limiting to those that passed
quality control. However, the overall behaviors predicted by
the Strouhal number (lower cutoff frequency for larger plants
and slower wind speeds) were generally supported. Quanti-
tative metrics show that the cloud advection model has more
accurate results than the wavelet variability model when con-
sidering sites with a strong cloud motion induced correlation,
but that the cloud advection model is less accurate than the
WVM when incorporating a broader swath of sites, for which
the correlation to the reference site declines.

The cloud advection model’s performance was observed to
decrease with increasing frequency, corresponding to a loss of
transfer function coherence. This may be due to the presence
of noise, or a loss of correlation in the advection across the
plant at these high frequencies. Transfer functions, which al-
low investigation of the coherence (frequency dependent cor-
relation), may be a useful framework to investigate this effect
more deeply.

The key result of this paper can be summarized as fol-
lows: when considering aggregation by plants that are aligned
with the cloud-motion direction, advection-related effects are
present in short-term irradiance time series that are not well
represented by traditional models of spatial aggregation. The
cloud advection model developed in this paper provides bet-
ter representation of the aggregate time series in these cases.
However, outside of these conditions, the foundational as-
sumptions of the cloud advection model limit its generaliz-
ability somewhat. The cloud advection model is based upon
an assumption of frozen, one-dimensional cloud advection at a
fixed speed. Consequently, its accuracy decreased when con-
sidering longer timer periods (e.g. for which the cloud speed
cannot be assumed to be constant) or when considering plants
that were larger in the cross-wind direction. This occurred
in part due to cross-wind decorrelation of the time series (i.e.
the clouds are not truly 1-D). Traditional decorrelation-based
models, such as the WVM, showed better performance than
the cloud advection model when dealing with these cross-
wind distributions where the uniform, frozen clouds assump-
tion is less likely to hold. In a sense, considering plants with a
cross-wind dimension and considering longer-term time win-
dows essentially averages out the advection effects that were
observed in this study. That said, we have demonstrated that in
order to model the aggregation of irradiance at a detailed level,
the advection of clouds cannot be neglected and models that
focus solely on the long term decorrelation between sites are
unlikely to yield good short term results. Hoff and Perez3 de-
scribe a continuum between fully correlated, advection domi-
nated conditions and fully decorrelated, independent measure-
ments. The success of the cloud advection model in represent-
ing the high detail aggregation of irradiance suggests that fur-
ther efforts are warranted that seek to bridge the gap between
these conditions. The model described in this study shows that
advection dominates the reduction of variability when consid-
ering short-term detailed plants. Thus, there is a need for con-
tinued research to develop models that are able to represent
both the high detailed advective phenomena, while still de-
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scribing the decorrelated long-term and cross-wind variability
of large plants.
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