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Abstract—A model for predicting smoothing of solar irradiance
by spatially distributed collectors was analyzed. The model
assumed cloud advection dominates the relationship between
sites and represented the distributed plant with a transfer
function. The transfer function representing the smoothing effect
was shown to be the Fourier transform of the plant’s spatial
distribution, and as such, the plant represents a low-pass fil-
ter. Comparison with measured data from the HOPE-Melpitz
campaign showed that the model is able to replicate dynamics
present in the measured plant transfer function and showed good
frequency domain agreement. Generalization of the approach
is needed for broader applicability, as the current analysis
only validated against one-dimensional, advection dominated
conditions. However, the approach warrants further study as
it has demonstrated an ability to reveal frequency domain
characteristics not currently reflected by state-of-the-art models.

Index Terms—variability, spatial aggregation, wavelet variabil-
ity model, transfer function

I. INTRODUCTION

Expanded deployment of solar energy is a critical com-
ponent of the worldwide response to climate change. Like
other distributed forms of renewable generation, the rate of
power delivery for solar photovoltaics (PV) is highly variable.
This variability is generated power is rooted in variations
in the input resource: received solar irradiance. Irradiance
variability is caused both by predictable diurnal variations and
more chaotic cloud and weather driven influences. Accurate
forecasts of irradiance variability are important for electrical
system operators, who need to balance generation and demand
on a continuous basis. As a result, physical models and tools
to predict the output from a PV system are of great practical
interest.

Many large scale PV generation facilities and irradiance
monitoring networks utilize point sensors for measurement
of irradiance. It is well documented in the literature that the
outputs of practical systems demonstrate smoothing relative to
these single point monitoring measurements [1]. Aggregation
of power at the utility-scale is important due to the relatively
large capacities that can be involved. Typical utility-scale PV
generation facilities might consist of a large number of PV
panels distributed spatially over a local area in a nearly contin-
uous fashion. On the other hand, aggregation of distributed PV
generation at the transformer or substation level may also be
of interest to grid operators, however, distributed PV typically

consists of smaller installations distributed throughout a region
or neighborhood in a more discrete fashion. As such, models
that attempt to describe aggregation must address a diversity
of plant shapes and distribution characteristics.

A. Characterizing and Modeling Variability

Previous modeling activities aimed at describing how spatial
aggregation influences variability of the solar resource are
abundant in the literature. A thorough review of the spatial and
temporal nature of irradiance variability is given by Perez et al.
[2], but a summary of models most relevant to the development
in this study is provided in the subsequent paragraphs.

Variability is characterized using the change (ramp rate)
of some physical parameter over a given time interval, ∆t,
and possibly considering a variable time integration period
[3]. Perhaps the most typical physical parameter used for
variability characterization is clear sky index, Kt∗, because
it normalizes out the effects of the diurnal cycle. Ramp rates
of clear sky index may be represented by the symbol ∆Kt∗∆t.
Variability is then often characterized as the standard deviation
of this term:

σ (∆Kt∗∆t) (1)

An important study on quantifying spatial aggregation of
irradiance was that of Hoff and Perez [1]. They considered
the change of variability due to a network of collectors by
considering the correlation (or lack of correlation) between
individual sites in the network, showing that a network of
uncorrelated sites causes a reduction in the variability scaling
as 1/

√
N . They further describe correlation of sites in terms

of cloud advection using a ”dispersion factor”, D, which is
defined as the ratio between the length of the plant in the
advective direction divided by the cloud velocity multiplied by
the time interval (Eq. 2). This model, as the authors noted, was
not yet generalized to consider arbitrarily distributed systems.

D =
L

Vc∆t
(2)

Marcos et al. [4] describe the aggregation due to a spatially
distributed plant in terms of a transfer function, TF (f),
between a single point measurement input and the entire site
output. This promotes an interpretation of variability in a
frequency domain context. They represent the transfer function



as a first-order low-pass filter, whose single pole depends on
the size of the plant. They apply this approach to model large
dispersed plants [5]. The transfer function proposed takes the
form of:

TF (f) =
K

if
fc

+ 1
(3)

where i =
√
−1. The cutoff frequency, fc, was found to

depend on the plant area in hectares, S, as follows:

fc =
0.2√
S

(4)

Another approach that focuses on frequency characteristics
of the time series is used by the Wavelet Variability Model
(WVM) of Lave et al. [6]. This model separates a clear sky
index time series into discrete wavelet modes (i.e. frequency
bands) and applies a frequency-dependent variability reduction
factor that is a based upon the pairwise correlations between
the distributed sites. Implementations of the WVM, such as
that provided with the PVLIB MATLAB toolbox1, represent
an arbitrarily distributed plant by creating a grid of individual
points within the plant footprint. A centrally located reference
site is intrinsic to this approach.

As the wavelet mode scaling is considered to be constant for
a fixed plant distribution and cloud speed, the WVM approach
also essentially consists of a fixed transfer function acting on
the input time series. Individual wavelet modes in the WVM
are scaled down based upon ρsum, the cumulative sum of all
possible site-pair correlations within a given plant:

wP (t) =
wref (t)√

N2

ρsum

(5)

Later studies by the same group [7] demonstrated that the
individual pairwise correlation, ρ, between sites is directly
related to the sites’ separation distance and the dominant cloud
transport speed. Specifically, they describe site pair correlation
with an inverse exponential decay:

ρ = exp

(
− L

(Vc/2)∆t

)
(6)

In the present study, we derive a one-dimensional cloud
advection model (CAM), which follows the physical cloud
advection approach of Hoff and Perez [1], and utilizes a trans-
fer function representation as in [4]. This model specifically
focuses on extending the approach used by Hoff and Perez to
account for a variable plant spatial distribution.

II. MODELING APPROACH

As in Marcos et al. [4], we represent the aggregating
effect of the plant as a transfer function between a local
irradiance time series at a single reference point, gref (t), and
the aggregate irradiance averaged over the entire plant, p(t). A
transfer function describes this as the ratio of output to input,

1https://pvpmc.sandia.gov/applications/wavelet-variability-model/

albeit with each time series transformed into the frequency
domain:

TF (f) =
P (f)

Gref (f)
(7)

We define a one-dimensional spatial distribution of the
collector, d(x), to represent the density of collection per
unit distance (units of W

m2m ). The distribution is normalized
to the total spatial extent, X . Thus, the effective aggregate
plant irradiance averaged over the full spatial extent can be
represented as:

p(t) =

∫
X

d(x) · g(x, t)dx (8)

Following Hoff and Perez’s cloud advection approach, the
spatial dependence of the true local irradiance, g(x, t), can
actually be represented as the solar irradiance at the reference
point, delayed by an advective time, τ = x

Vc
.

g(x, t) = gref (t− x

Vc
) (9)

We rewrite the spatial coordinate of the plant’s distribution
in terms of this delay, and adopt the notation of d∗(τ).
The aggregate irradiance then becomes a convolution between
the plant’s delay-coordinate distribution and the reference
irradiance:

p(t) =

∫
X
Vc

d∗(τ) · gref (t− τ)dτ (10)

Because time-domain convolution represents multiplication
in the frequency domain, substituting this into Eq. 7 yields
the simple result that the transfer function representing the
plant’s spatial aggregation of irradiance is simply the Fourier
transform of the plant’s spatial distribution, as in Eq. 11. This
result is similar to one previously derived to describe the
dynamic response of flames to convected structures [8].

TF (f) =
D∗(f) ·Gref (f)

Gref (f)
= D∗(f) = F

[
d∗
(
x

Vc

)]
(11)

Given a transfer function, TF (f), computed based on the
plant’s distribution, d(x), at a given cloud speed, Vc, we can
solve Eq. 7 for P (f). Multiplying the transfer function by the
input irradiance frequency spectrum, Gref (f) yields the plant
output. We can then perform an inverse Fourier transform to
compute the desired aggregate time series, p(t).

Note that this model operates directly on an irradiance time
series as the input, gref (t), as opposed to the clear sky index
time series used by the WVM in previous studies cited. As
such, computing the clear sky index variability here would
require the additional step of normalizing the simulated output
by the predicted clear sky irradiance before calculating the
ramp rates.



III. MODEL RESULTS

Though the formulation of this model is intended to describe
an arbitrarily distributed plant, more detailed understanding
of the modeling results may be developed by considering a
simple plant geometry for which an analytical solution can
be obtained. Consider a plant that can be represented as a
uniform spatial distribution of length L, with a reference site
at the front edge of the plant relative to cloud motion (x =
0). The plant’s distribution in the delay coordinate, τ , is then
represented by a difference of two Heaviside functions, H , the
first switching on at a delay of 0 and the second at a delay of
L
Vc

. This results in a flat-top profile.

d∗(τ) = H(τ − 0)−H
(
τ − L

Vc

)
(12)

Recognizing that the inverse of the time scale in Eq. 2 can
be written as a frequency, we observe that the dispersion
factor described by Hoff and Perez [1] is equivalent to the
common nondimensional Strouhal Number encountered in
fluid mechanics:

St =
fL

Vc
(13)

The Fourier transform of the uniform distribution profile given
by Eq. 12 is then given by the complex analytical expression:

TF (f) =
1

2πiSt
[1− exp (−2πiSt)] (14)

Graphing the magnitude and phase of this transfer function
results in a low-pass characteristic, representing the common
sinc-in-frequency filter with time delay, as shown in Fig. 1.
Values of zero in the magnitude occur at integer values of the
Strouhal number, and are accompanied by a +180◦ shift in the
phase. Excepting these 180◦ shifts, the phase is characterized
by a linearly decreasing trend, indicative of time delay, which
can be quantified as in Eq. 15. This result matches natural
intuition about the advective phenomena: the output is delayed
by the time it takes for a cloud to advect across half the length
of the overall plant.

τdelay = −dφ
dω

=
L

2Vc
(15)

Several characteristics inherent to this model (notably the
high-frequency dynamics in magnitude that occur after the
initial cutoff) are unique to the model used here, and do not
occur in the WVM [6] or low-pass filter model by Marcos
et al. [5], both of which basically just exhibit a decrease
in magnitude with increasing frequency. Investigation of the
advective physics at play reveals that these ringing phenomena
occur due to the implicit assumption of perfect correlation of
irradiance (albeit with delay) over the entire area of the plant.
More specifically, the alternating high- and low- magnitudes
observed in the TF at increasing frequency occur due to
constructive and destructive interference associated with con-
volution of the cloud time series across the entire plant spatial
distribution. In a sense, we can think of the zero magnitude
value at a St = 1 as the two physical halves of the plant

Fig. 1. Sample theoretical plant transfer function magnitude for a square shape
plant. Frequency axis is nondimensionalized to represent Strouhal Number as
in Eq. 13.

oscillating exactly out of phase at this frequency, resulting in
a net zero oscillation when integrating. This effect could only
occur if the distributed irradiance time series exhibits no noise
at these frequencies (i.e. high spatial irradiance coherence).
So in a sense, the presence of high frequency rebound in
transfer functions provides the ability to discriminate cloud
advection, and its presence in a real aggregate time series
would be suggestive of a high degree of coherence at the
relevant frequency, such that frequency dependent interference
can be observed.

A. Accounting for Reference Site Location

Though the base form of this model describes a reference
site at the leading edge (i.e. τdelay = 0), the position of the
reference site within the plant can be accounted for by rotating
the angle (i.e. changing the delay) of the transfer function
while maintaining the magnitude. We do so by multiplying
the transfer function with a quantity with a magnitude of one
and a phase angle that varies linearly with the frequency, as
in Eq. 16. This is a well known operation in digital signals
processing texts. Reference sites that lie upstream from the
plant’s front edge result in an increase in delay (negative ∆x),
while downstream corresponds to a decrease in delay. So in the
example, shifting the reference site to be coincident with the
center of the plant would result in a phase shift that produces



zero time delay, indicating that the average position of clouds
over the plant coincides with the reference measurement.

TFrot = TF · exp

(
2πif

∆x

Vc

)
(16)

B. Real Plant Transfer Function

We tested the ability of the model to predict a transfer
function for a real plant as well. We extracted the positions of
an approximately co-linear set of measurement sites from the
HOPE-Melpitz irradiance measurement campaign (described
in more detail in subsequent sections). Each sensor was
assumed to be an infinitesimal point, laid out in a linear
south-to-north alignment. The distribution of these co-linear
sensors is shown in Fig. 2. The reference site is assumed to
be the central measurement site, with a location of x = 790m.
The predicted CAM transfer function for this distribution
was found by computing the Fourier transform of this plant
distribution, as shown in Fig. 3.

Fig. 2. Plant spatial distribution, d(x) mapped into one-dimension for the
full set of North-South points.

Similar to the simple uniform distribution case, the example
transfer function in Fig. 3 remains a low-pass filter, with
some rebounding high frequency dynamics visible after the
initial cutoff. In this case, however, the irregular spacing of the
measurement sites produces an uneven constructive/destructive
interference pattern that results in several peaks, including the
most significant around a frequency of 0.05 Hz. No significant
delay is evident in the transfer function phase, because of the
centrally located reference site for this measurement. On the
other hand, other dynamic response characteristics are present
in the phase.

While observing the characteristics of a predicted transfer
function is interesting academically, it is of much more prac-
tical interest to compare the response to real data.

IV. COMPARISON WITH MEASUREMENTS

A. Data Methodology

To validate the model, we have utilized data from the
HOPE-Melpitz measurement campaign outside Melpitz, Ger-
many [9], which took place during September 10-27, 2013.

Fig. 3. Sample theoretical plant transfer function magnitude for all points
indicated in Fig. 4, for time window A. Frequencies noted for some common
time intervals.

The data from the campaign consists of 50 individual global
horizontal irradiance (GHI) measurement sites, distributed
over an approximately 3000 m x 2000 m region. Of these, 26
sensors were distributed in a dense 400 m x 200 m cluster in
the center of the region, with the remaining 24 spaced more
sparsely outside. An image of the campaign distribution is
shown in Fig. 4. All measurements were of GHI time series
with a 1s resolution.

In order to test the 1-D model against results, we selected a
subset of 11 sites aligned nearly linearly in a north-south direc-
tion (see Fig. 4). These are the same points that were described
by the sample transfer function in Section III-B. Analytical
methods for deriving the cloud motion vectors from a network
of measurements are documented in the literature [10], [11].
However, for the purposes of this validation, two brief (around
one hour) temporal windows were manually identified during
which cloud advection along this north-south direction was
evident in the time series. We identified these windows by
finding periods where lags in the cross-correlation between
the sensors (relative to a fixed reference) were consistent with
a uniform cloud speed in this direction. A demonstration of
this is shown in Fig. 5, which graphically demonstrates the
increased site-pair cross-correlation that arises when advective
lag is accounted for between multiple sites [2]. Details for the
two windows studied are shown in Table I.



Fig. 4. HOPE-Melpitz measurement campaign layout. Yellow dots represent
the subset of north-south oriented sites used for cloud advection. Image credit:
Google and QGIS Contributors.

TABLE I
CLOUD ADVECTION WINDOWS

ID Date Times Cloud Speed

A September 8, 2013 09:15 - 10:30 20 m/s to south
B September 22, 2013 08:45 - 09:45 30 m/s to north

In all cases discussed in this validation, the reference site
used was site 40, which was the centrally located point within
the measurement campaign footprint. The simulated plant
output was computed by summing the time series from a set of
measurement sites on the north-south alignment to simulate the
output of the aggregation. Both the input and output time series
were normalized to their mean to produce a transfer function
with a low-frequency magnitude of unity. For both the input
and output, Fast Fourier Transforms (FFTs) were computed
and Eq. 7 was used to compute the transfer function for the real
plant. Frequency domain averaging was performed to smooth
the transfer function spectrum. Averaging was performed by
splitting the overall window into 10 segments and applying a
hanning window.

B. Model Comparison

In addition to simulation with the CAM as described in
previous sections, other existing models were compared as
well. The WVM was represented using the implementation
included in the open source package pvlib python [12]. The
model proposed by Marcos et al. was implemented using
the analytical transfer function given in Eq. 3. As the plant
modeled here is one-dimensional, no area is available for
computation of the cutoff frequency (see Eq. 4), and so manual
adjustment was used to empirically make the cutoff frequency
match the approximate cutoff frequency of the CAM model.
Output time series predictions for the CAM and Marcos et al.
models were computed by applying the plant transfer function
to the frequency domain representation of the reference point
signal. As the WVM transfer function is dependent upon the

input time series, frequency averaging (10 window segments
with a hanning window) was performed similarly to for the
simulated real data.

Fig. 6 shows a comparison of the plant transfer function
as computed from the real data and for the three models.
All three models predict the overall low-pass filter shape
of the response. However, some of the more complex high
frequency dynamics, including the peak around 0.05 Hz, are
only predicted by the CAM model. As stated previously,
these dynamics are highly suggestive of advection-dominated
physics, as correlation between sites is necessary to produce
this interference pattern. The CAM model also reasonably
matches the phase up to around a frequency of 0.06 Hz (a
∆t time period of around 15 s). The WVM model basically
avoids any phase dynamics, while the Marcos et al. model
exhibits a single phase shift around the location of its pole,
as is typical of first-order filter models. We also notice that
coherence drops off significantly above the 0.06 Hz frequency,
indicating that above this frequency, the dependence between
the input and output is no longer well correlated.

Visual comparisons of time series do not always yield good
measures of performance, but can be somewhat instructive.
Time series of clear sky indices are shown in Fig. 7. The
smoothing effect of aggregation is clearly visible between
the reference and real cases. The WVM and CAM have
comparable performance in replicating the time series, though
qualitatively the CAM does represent some aspects of the
overall shape somewhat better (e.g. around 50 s, and 150 s).
The Marcos et al. model experiences some time shifting of the
peaks relative to the reference signal, which is due to the phase
mismatch induced by the single pole in the transfer function.

Comparisons of variability metrics are a more quantitative
way to assess performance of the models, and are shown in
Fig. 8. For this advection dominated time window, it can be
seen that the WVM somewhat underpredicts the variability
(overpredicts the smoothing), especially at increasing value of
∆t. Both the Marcos et al. model and the CAM predict the
variability and ROV relatively well for this time window.

C. Changing the plant distribution

As stated in the previous section, the high frequency
dynamics observed in the transfer function magnitude are
characteristic of strong spatial correlation between multiple
measurement sites as advection takes place. To further con-
firm that these dynamics are well represented by the cloud
advection model, we considered other selections of points
from within the Melpitz footprint. Fig. 9 shows several such
site subset selections, along with their corresponding transfer
function magnitude comparisons. In each case, we see that
though significant changes to the transfer function occur, the
CAM does predict these changes to the major features of the
dynamics. In all cases, the match begins to break down at
higher frequencies, possibly associated with decreases in the
coherence as described previously.

We perform a similar comparison for window B in Fig. 10.
It is interesting to note that because the point selections for



Fig. 5. Cross-correlation between sites and the central reference site. Left shows cross-correlation with zero lag, while right shows peak cross-correlation at
any lag, demonstrating increased correlation corresponding to north-south cloud motion. Correlations are computed for Window A.

Fig. 6. Transfer function magnitude, phase and coherence for the case of all
selected points indicated in Fig. 4 for window A. Frequencies noted for some
common time intervals.

Fig. 7. Time series of Kt∗ and ∆Kt∗∆t with ∆t = 1s for the case of
all selected points indicated in Fig. 4 for window A. Compares the single-
point reference, the real aggregate data, and results from three models. The
reference point used is the central point in the domain.



Fig. 8. Variability metrics as a function of ∆t for the real case and various
models for the case of all selected points indicated in Fig. 4 for window A.
ROV is the Relative Output Variability described by Hoff et al. [1], and is
not shown for the reference case.

the four site subsets are the same between the Figs. 9 and 10,
the predicted transfer functions for window A and window
B are basically identical in shape. However, the window B
transfer function is essentially stretched in frequency relative
to window A, corresponding to the higher cloud velocity. This
further supports the basic physics described by the Strouhal
number scaling described in Fig. 1: higher cloud velocities
correspond to higher cutoff frequencies.

The key finding from these results is that under cloud advec-
tion dominated conditions, like the two windows shown here,
spatial aggregation can produce complex frequency response
characteristics in the smoothed plant output, and that can
be described by a simple physical model. These results also
suggest that frequency domain analysis may be an important
method for investigation of variability, because high frequency
dynamics can be induced by aggregation. Though the CAM
is relatively successful at producing good results in these time
windows, its practical application in limited. As described in
this paper, it has only been used to describe one-dimensional
distributions of measurements (albeit with arbitrary shape),
and only during carefully selected advection-dominated irra-

Fig. 9. Compared transfer function magnitudes (right column) for various
selections of points (left column) for window A.

diance conditions. However, because these initial results show
promise, further research is warranted to consider how this
model could be applied to represent a two-dimesnional plant
distribution, and how it could best be applied for more general
cloud motion conditions.

V. CONCLUSION

The CAM analyzed in this study was developed to model
the aggregation of irradiance by an arbitrarily distributed plant.
The model was able to predict frequency domain behaviors of
the plant transfer function that were observed in advection-
dominated cloud conditions in a test dataset. Other models do
not predict these dynamic behaviors, which is likely due to the
fact that these models are developed to reflect the long-term
variability reduction of distributed plants, for which site-pair
correlation is much less consistent than in the limited cases
tested here. In addition, the validation performed here was
limited to a one-dimensional set of points, which do not really
represent a typical distributed plant.



Fig. 10. Compared transfer function magnitudes (right column) for various
selections of points (left column) for window B.

Though this study confirms that modeling of cloud advec-
tion is important to accurately representing a plant transfer
function under short-term advection-dominated conditions,
further work is needed to generalize for practical applications.
Two-dimensional plants with multiple wind speeds, directions
and cloud conditions must be considered. Additional work
is also necessary to further describe the transition between
the high spatial correlation behavior seen at low- to mid-
frequencies in the transfer functions here, and the reduction
in coherence seen at higher frequencies. Nonetheless, analysis
via transfer functions appears to be a promising approach to
improve understanding of spatial smoothing of solar irradi-
ance, and the approach used here may offer improved results
when modeling variability under cloud advection conditions.
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U. Löhnert, B. L. Madhavan, V. Maurer, S. K. Muppa, J. Schween,
I. Serikov, H. Siebert, C. Simmer, F. Späth, S. Steinke, K. Träumner,
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