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Abstract

In this paper, an open source tool is introduced to represent urban energy infrastructure in the City of Philadelphia, and different
renewable energy scenarios are compared with respect to minimization of the standard deviation of the residual load. Renewable
energy sources play a critical role in the world's ongoing energy transition in response to climate change. Urban Energy Systems
may be particularly sensitive to this transition due to the high energy demand density associated with urban environments. Open
energy analysis and modeling tools can provide important information that can be used by urban energy planners, policy makers,
and other stakeholders during this transition. In the present study, we apply FlexiGIS, an open energy modeling tool developed
in a European context, to a case study in the City of Philadelphia. Due to the importance of open access to energy data, we pay
particular attention to open energy data sources. Notably, OpenStreetMap was incomplete in its spatial coverage, but alternate
open data resources were identified. This work conducts an optimization of the renewable energy mix to minimize the amount
of balancing energy required for the residual load. We observe that Philadelphia has an optimal mix of renewables that favors a
roughly even share of wind and solar, but that, compared to a previous case study in Oldenburg, Germany, requires more balancing

energy at comparable levels of renewable penetration.
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1. Introduction

Transitioning from traditional energy generation toward
carbon-neutral renewable energy sources will be necessary to
mitigate future global impacts of climate change. This transi-
tion is expected to present novel challenges to planning and op-
erations of existing electricity systems. Urban Energy Systems
(UES) are areas of particular interest in this respect, because
the concentration of loads in urban centers can serve to am-
plify stresses placed on a system as renewables are introduced.
By the middle of this century, the world's urban population is
expected to double that of 2008 (1). Cities account for 65%
of global energy demand and 75% of carbon emissions, with
an increasing trend (2). Although the role of cities in shaping
the trajectory of climate change has been recognized in some
international agreements like the New Urban Agenda (3), im-
plementation strategies have not received enough recognition
in global political agendas (4). The role of cities in leading the
transition toward renewable energy is motivated by drivers that
REN21 categorizes as environmental, socio-economic and en-
ergy security or governance (2).

Policies and planning related to energy transition in urban
environments may often begin at the local level. In Germany,
bottom-up insights and experiences are gaining increasing at-
tention as ways to ensure a successful energy transition, “En-

Preprint submitted to Applied Energy

ergiewende,” by engaging cities. Integration of local urban re-
newable energy resources has been treated as a vital milestone
for the sustainable transformation in German cities (5). As an
example, the city of Emden has set a target of covering 100% of
its energy demands from renewable sources by 2030 (6). In ad-
dition, the city of Herten has been using a virtual energy storage
system that includes available storage systems and energy gen-
eration, allowing a higher share of urban renewables (7). In the
US, cities have also taken a role in forming energy policy. For
example, the City of Philadelphia has adopted a plan to reduce
carbon pollution by 80%, and to transition to 100% carbon-free
electricity by 2050 (8). Studies have demonstrated that energy
policies are subject to politicization and resistance as they be-
gin to threaten existing energy industry actors (9). However,
modeling of energy transition in the US suggests that contin-
ued growth of the renewable share of electricity generation is
expected to be driven by economic factors (10).

The optimal design of city-integrated renewable energy sys-
tems needs systematic modeling approaches and platforms like
in (11). Hence, analyses of UES based on renewable energy
possess a fundamentally spatial nature (12). While loads have
always had a distributed character, renewable systems intro-
duce a spatial character to generation and resource availability
as well. This is particularly true for power generated by so-
lar photovoltaics (PV) and wind turbines. Unlike traditional
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fuel resources, which can be collected and concentrated for
utilization, renewable resources like solar and wind are avail-
able in relatively diffuse, hard to aggregate quantities, that are
distributed throughout the environment. Consequently, genera-
tion facilities based on exploiting these resources must be dis-
tributed as well. This distributed generation may require the
development of advanced control strategies to maintain power
quality and grid stability (13). Despite presenting operational
challenges, this situation also represents a significant opportu-
nity; future energy systems that are designed with distributed
load, generation and storage in mind may be able to benefit
from spatial matching of these elements and offer positive ben-
efits to system operation. Energy models and tools integrated
in a Geographic Information System (GIS) platform offer many
advantages in this regard. GIS has been considered as a useful
tool that facilitates connecting data with geography. It allows
multilayer and realistic representation of urban energy systems,
as well as links and interdependencies between different lay-
ers. Research is still needed to develop a better understanding
of the interplay between the various elements of UES with re-
newables and how their performance can best be modeled and
anticipated. Using GIS techniques, this research combines both
temporal and spatial parameters of urban geometries, linking
them to real world applications utilizing solely open source ur-
ban energy datasets. Ultimately, our ability to efficiently plan
and manage the increasing penetration of renewable generation
facilities into UES relies on the availability of data and tools to
support reliable, high confidence technical analysis and moni-
toring of these systems, including the crucial spatial dimension.

While data and tools to support renewable energy analysis
must be spatial in nature, it is also desirable for these resources
to have an open character (14). Considering these endeavors
from a perspective that considers all goals of sustainable devel-
opment (15), open access is able to reduce barriers for policy-
makers, planners and other stakeholders and can provide an eq-
uitable platform to investigate energy scenarios, so that decision
making can be driven by sound scientific knowledge. Modern,
city-level renewable energy policies are made by entities of all
sizes, and in all areas of the world (2). Consequently, decision
makers exhibit a great diversity in terms of financing and re-
sources available to support these types of planning activities.
While no one tool may be available to enable out-of-the-box
analysis of all types of energy scenarios, operating within an
open framework (16) allows tools to be easily adapted for local
contexts utilizing available data. Opening up UES tools will
enable researchers, students and academics to further develop
and create new urban energy models saving time and resources.

This study makes an original contribution to the field by test-
ing application of an existing open UES modeling tool in a new
context that is subject to different data constraints than those
for which it has been previously demonstrated. FlexiGIS (17)
is an open access spatial tool that was developed for modeling
of UES. This tool, however, was developed in a European con-
text, relying on commonly available open data sources therein.
In this study, we demonstrate for the first time the applicability
of FlexiGIS in a case study in the US with different data avail-

ability constraints. In conducting this case study, we identify
alternate data sources that support application of this model in
the US context demonstrated here. One of FlexiGIS’s key com-
putational capabilities is the optimization of renewable energy
mix in an urban context. Though this modeling approach has
already been reported in the literature, we have improved upon
the existing formulation by deriving an analytical form of the
optimization that can now be used to provide direct insight into
the optimum renewable energy mixture’s dependence on its in-
put data. For the first time, we are also able to provide an open
source implementation of this calculation in the supplementary
materials, to facilitate its application.

The remainder of this paper is structured as follows; an
overview of selected UES tools and the FlexiGIS model are in-
troduced in Section 2. Section 3 discusses input data collection
for UES modeling. The developed methodology and data pro-
cessing for the case study are presented in Section 4. Section 5
presents the resultant data and provides an analysis and discus-
sion of its implications. Section 6 contains the conclusions and
recommendations. Finally, supplementary materials and the de-
veloped scripts are provided in the Appendix.

2. Existing Tools and Platforms

This section provides an overview of some selected urban
energy models that have been developed to investigate differ-
ent aspects of energy systems in cities. Most of the devel-
oped tools are designed for a particular urban energy sector
or application. The Open Source Energy Modeling System
(0OSeMOSYS) framework was created for modeling develop-
ing countries at the national level (18). An extended and cus-
tomized version of OSeMOSYS was introduced by (19) for the
continental US scale. It aims to investigate US electricity in-
frastructure pathways by 2050. Another study (20) introduced
a mathematical model to explore the photovoltaic potential as
an energy supplier for charging electric vehicles in cities. The
authors in (21) present a Bayesian hierarchical model to esti-
mate the PV potential in residential areas.

CitySim is a tool developed by Robinson et al. (22) for the
optimization of building-related resource flows for sustainable
urban planning. Nitkiewicz et al. (23) describe a data-driven
urban energy simulation tool (DUE-S), introduced primarily
to predict the energy consumption of multi-scale urban energy
modeling workflows in US settings. Another model, Synthetic
City (SynCity), facilitates the integrated modeling of urban en-
ergy systems (24).

SimStadt is a model that provides a platform for three dimen-
sional city models and visualization support (25). CityGML is
a standard data model developed to store digital 3D models of
cities. It allows a multi-scale representation of spatial data in-
frastructure in cities (26). SUNtool (Sustainable Urban Neigh-
borhood modeling tool) supports urban planners in optimizing
the sustainability of urban neighborhoods (27). HUES stands
for Holistic Urban Energy Simulation and allows investigation
of the relationship between district size and the sizing of the



necessary infrastructure (28). An open source model, called
urbs, can be used to investigate energy scenarios and capacity
expansion in urban energy systems (29). Finally, uesgraphs (30)
introduces methods to graphically represent and analyze energy
network structures and handle their datasets in a Python graph
structure.

Based on a comprehensive review of the state of the art of
GIS based models for urban energy systems, Alhamwi et al.
(17) demonstrated that growing research interest exists in mod-
eling urban energy systems using Geographic Information Sys-
tems (GIS). The authors in (17) identified a gap in the literature
related to the integration of flexibilization assessment using GIS
techniques at the city scale, and a platform called FlexiGIS was
developed to fill in this gap.

2.1. FlexiGIS Overview

FlexiGIS stands for Flexibilization in Geographic Informa-
tion Systems (GIS)'. FlexiGIS is an open source GIS-based
platform for the optimization of flexibility options in urban ar-
eas, and has previously been applied and showcased in the liter-
ature in a primarily European context (31). The FlexiGIS plat-
form consists of three main modules:

e The first module establishes the underlying spatial ur-
ban energy infrastructure like streets, buildings, and avail-
able urban renewable power capacities. It downloads raw
geo-datasets from OpenStreetMap for a specific urban
area under investigation. Subsequent steps include geo-
proceessing, extracting, filtering and clustering of the geo-
referenced urban energy infrastructure data (17).

e The second module adds the temporal dimension to the
first. It develops simplified models to simulate local elec-
tricity consumption and on-site renewable power genera-
tion (32).

e The third module uses the datasets generated in the first
two modules and other techno-economic datasets to per-
form a cost optimization of flexibilization technologies,
like storage, and identifies the potential areas for opti-
mized decentralized storage in urban settings (33).

The resultant datasets from all three modules can be visualized
using any GIS client, including open tools such as QGIS?. Fur-
thermore, FlexiGIS systematically investigates different scenar-
ios of self-consumption and analyzes the characteristics and
roles of flexibilization technologies in promoting higher energy
independence levels in cities (31). The FlexiGIS platform aims
to link the simulations of urban energy infrastructure to real
world applications. It is designed to be modular and current
development is underway to automate all its modules so that it
can be easily extended to other areas.

! https://github.com/FlexiGIS/FlexiGIS.git
Zhttps://www.qgis.org/

Though FlexiGIS has been described previously in the lit-
erature, it has not demonstrated in the US. Here, we apply
FlexiGIS to a case study in the US (namely, the City of Philadel-
phia, Pennsylvania), in order to test the extensibility of the plat-
form. In particular, it was found that the City of Philadelphia
does not have a complete dataset available in OpenStreetMap,
the open geodata source on which FlexiGIS relies. Thus, inves-
tigation of alternate open data sources is necessary to evaluate
FlexiGIS in this context. In addition to extension of the tool,
we also use this case study as an opportunity to draw a compar-
ison between the present results and prior data from Oldenburg,
Germany (32).

3. Data Availability

The City of Philadelphia, located in the southeast corner of
the state of Pennsylvania, is the most populous city in the state
and the sixth largest city in the US, based on 2019 data (34).
In terms of energy services, the regional transmission organi-
zation (RTO) responsible for most of the state of Pennsylvania
as well as several neighboring states is PIM. The PJM region
is broken into a number of load areas based on local distribu-
tion utility companies. Among these is PECO (Figure 4), the
local utility serving Philadelphia and its surrounding area. The
area served by PECO had a 2010 Census population of around
3.8 million, around 40% of which (1.5 million) lived within the
City of Philadelphia (35).

Philadelphia’s status as a large metropolitan area, and the
availability of open data related to the city and its energy sys-
tems make it a convenient case study for urban energy system
analysis and FlexiGIS. In the following section, we will sum-
marize some open data sources related to UES for the City of
Philadelphia (and surrounding PECO region) that could be used
as inputs for energy modeling. We targeted the year 2017, rep-
resenting the most recent year for which all types of time series
data were presently available.

3.1. Defining Openness

Any discussion of open data requires specificity in the defini-
tion of open. Relative to the context of user access to services,
openness may be described from a dual perspective of cost and
user rights. Some data sources and tools in this framework may
be described as universally open: they can be accessed with-
out cost and are subject to a permissive license that includes
the right to redistribute the data (e.g. the Open Database Li-
cense  used by OpenStreetMap). Other data sources may be
free of cost, but are still subject to a license that affects users
rights to reuse or redistribute the data. As stated previously, in
the context of tools for UES modeling and analysis, we con-
sider openness to primarily impact the ability of users to access
and utilize tools to gather information and apply the analyses
to their own unique context. As such, it is desirable that tools

3https://www.opendatacommons.org/licenses/odbl/
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(such as FlexiGIS) are both free of cost and have permissive
licenses that allow users to access them for any purpose. How-
ever, we will deem input data sources that are publicly available
without cost to qualify as sufficiently open for the purposes of
this discussion, in that it is not inherently necessary for users to
redistribute source data in order to reduce barriers to access of
this knowledge. All the data sources described in the follow-
ing sections meet this sufficient criterion of being accessible by
the public free of charge, so that they can serve as inputs to a
general set of analyses using FlexiGIS.

3.2. Energy Infrastructure

We gathered data on existing power generation facilities from
the US Energy Information Agency (EIA) website*. This data
includes all power generation facilities in the US with a name-
plate capacity greater than 1IMW. Additionally, shape files were
available from the Department of Homeland Security for trans-
mission lines and electrical substations > in the US. A visualiza-
tion of all the energy infrastructure data for the PECO region is
shown in Fig 1.

3.3. Structures and Land Use

In previous studies on FlexiGIS, OpenStreetMap (OSM) was
used in load calculations as a source of detailed information
about buildings and their intended use (17). When considering
this data source for use in the City of Philadelphia, it was dis-
covered that the OSM building data is somewhat incomplete, so
other sources were considered. Generally, a great deal of open
spatial data related to buildings and land use are available for
the US, but data sources are somewhat fragmented, as most of
this data is distributed at the state or city level. In this case, data
for the State of Pennsylvania is available from the Pennsylva-
nia Spatial Access Database (PASDA)S. Shape files of building
footprints for the City of Philadelphia, and their associated land
use tags, were acquired from PASDA.

To quantify the degree to which OSM data for the City of
Philadelphia was available, a comparison was made between
the building data from OSM (applying FlexiGIS) and that ob-
tained from PASDA. Within the city boundaries, OSM was
found to contain fewer than 10% of the buildings included in the
PASDA dataset (45,126 buildings OSM to 539,558 in PASDA).
When considering building footprint area, the ratio is slightly
higher (22%: 15.2 km? area to 67.6 km?), indicating that OSM
preferentially contains large buildings. This is evident in the
comparison map images shown in Fig. 2 for OSM and Fig.
3 for PASDA. It is clear that OSM is missing large regions of
buildings, especially in the upper half of the map. It may also be
useful to compare the total area for which land use is specified
between the two sources. In this case we find an area coverage
of 107 km? for OSM to 368 km? for PASDA (OSM has 29%

“https://www.eia.gov/maps/layer_info-m.php
Shttps://hifld-geoplatform.opendata.arcgis.com/datasets
Shttps://www.pasda.psu.edu

coverage). Given that PASDA data is provided in the public do-
main, incorporating this data resource would improve the suit-
ability of OSM as a tool for UES modeling, however at present,
OSM could be said to substantially underrepresent the number
of energy-using buildings in Philadelphia.

3.4. Electrical Demand

A model of the electrical demand is necessary to estimate
the impact of renewable energy generation on the grid base-
line. Previous contributions have utilized standard load profiles
in order to estimate the hourly energy load (32). Standardized
building load profiles are available for Typical Meteorological
Year version 3 (TMY?3) locations throughout the US from the
Department of Energy Office of Energy Efficiency and Renew-
able Energy 7. These load profiles are based on 16 types of ref-
erence commercial buildings, as well as residential buildings.
In principle, these load profiles principle be used to simulate
loads based on the building footprint area and land use type.

Alternatively, measured electricity demand data may be
available from various RTOs (or ISOs) in the US. For exam-
ple, PJM provides access to historical hourly metered load data
by individual load area 8. In this study, we used hourly load data
in the PECO load area (which includes Philadelphia) to charac-
terize electrical demand in the case study region (36). This data
is subject to copyright by PIM, but is accessible by the general
public at no cost via the Data Miner 2 tool.

3.5. Resource Data

Renewable resource time series data were used as inputs for
renewable energy system (solar and wind) modeling. These
data were obtained from the National Solar Radiation Database
(NSRDB)°. An hourly time step was chosen for the resource
data, in order to match the time step of the load data. Time
stamps in the NSRDB resource data represent instantaneous
values, and are measured at the mid-hour point (e.g. 8:30 rep-
resents the hour from 8:00 to 9:00). NSRDB data provide time
series for components of solar irradiance (GHI, DHI, DNI) as
well as meteorological parameters such as ambient temperature,
pressure, wind speed and wind direction. Solar resource data
are based upon the Physical Solar Model (PSM) v3 (37), while
additional meteorological parameters are based upon MERRA-
2.

Wind speed data that can be used for wind power generation
modeling purposes are available for the US in the Wind Integra-
tion National Dataset (WIND) (38). WIND data is available for
the years 2007-2013. As mentioned, NSRDB solar irradiance
files also include wind speed based on MERRA-2, but no detail
is available about the altitude for which it is computed. Wind
data can also be obtained directly from MERRA-2, which pro-
vides access to a several meteorological parameters at various

"https://openei.org/datasets
8http: //dataminer2.pjm.com/feed/hrl_load_metered/definition
9https://nsrdb.nrel.g0v/
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Figure 1: Energy infrastructure data sets for PECO service region extracted from OpenStreetMap using FlexiGIS. Power lines and substation obtained via EIA.

Credits: OpenStreetMap contributors, QGIS Desktop.

Figure 2: Zoom in - urban energy infrastructure datasets in Philadelphia. Build-
ings extracted from OSM using FlexiGIS. Credits: OpenStreetMap contribu-
tors, QGIS Desktop.

Figure 3: Zoomed in urban energy infrastructure datasets in Philadelphia.
Buildings extracted from PASDA.

time scales (39). In the present study, we relied on hourly values
of wind speed at an altitude of 10 m, obtained from MERRA-2
via SoDa'”.

]Ohttp://www.soda—proAcom/web—services/meteo—data/merra
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4. Case Study

As stated previously, due to the incompleteness of OSM data
in some cases, application of FlexiGIS in the US may require
utilization of alternate data sources. As such, we have con-
ducted a case study of its application for the optimization of
renewable energy systems in the City of Philadelphia. Some
previous contributions developed simplified models to investi-
gate the optimal mix of renewable power generation at national
level (40) and continental scales like in (41). The model was
also utilized to assess continental scale storage needs with ex-
cess generation (42) and to consider the optimal mix of genera-
tion with regard to seasonal effects (43). The methodology used
for this case study will be described in the following sections.

4.1. Modeling Approach

Previous work utilized FlexiGIS to compute the optimum
mix of renewables from a meteorological perspective by an-
alyzing the residual load with different balances of wind and
solar, with any unmet energy demand purchased from the grid
(32). In this formulation, the residual load, R, can be defined as
the difference between the demand, L, and the renewable gen-
eration, W and S, for wind and solar respectively:

R(n) = L(t) - W) - S ey

We wish to cast this equation into a form that allows for vari-
able levels of renewable generation relative to the annual load.
We do this by normalizing to the mean annual load, (L), and
introducing the mean annual wind, (W), and solar, (S ), genera-
tion. We can then define explicit coefficients that represent the
fraction of the annual load met by the renewables: « for wind
fraction, and g for solar fraction.

_Lo_ W0 _Sw)
(L) (L) (W) (L)<S)y (L) (W) ~«S)

We can consider this equation for various mean levels of re-
newable generation (a and () relative to the annual load, such
that the remainder would be imported from the grid. We can
compute the fraction of the mean annual load that must be im-
ported from the grid, or met by non-distributed renewables (e.g.
Hydro/Biofuel power), as follows:

R, (1) =

(Cy=1-a-p 3

Previous work has considered the standard deviation of R,,, o,
to represent a cost function that serves as a surrogate for the
cost of storage or other dispatchable generation necessary to
accommodate fluctuations in the residual demand. A value of
og = 0 would imply that wind and solar combined perfectly
meet the demand at all times, while larger values indicate that
though renewables might meet the mean annual demand, in-
stantaneous overproduction must be shifted, e.g. by storage, to
meet demand in times of undergeneration.

Previous studies have used a computational approach to de-
termine the cost function at various renewable mix conditions.

However, the cost function can more conveniently be repre-
sented as the grand sum of all terms in the covariance matrix.
Here, we use a generic o, to represent the standard deviation in
time series x, while o, indicates the covariance between two
time series, x and y. The subscripts /, w, and s identify the load,
wind and solar time series respectively. The sum is as follows:

0'1% = 0'12 + 020'3V + ﬁ20'§ = 2a0y, — 2P0 + 2aB0 s @

or, by substituting the definition of the correlation coeflicient,
p:

2 _ 2 2 2 2 2_2 ) 2
Og =07 +a 0, +f°0; =2ap0 10w —2B01,010 s+ 2080,,,0,0
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Inspecting Eq. 5, we see that the mathematical description
agrees with an intuitive understanding of how renewable gen-
eration offsets the load; the cost function grows with increasing
variance in the wind and solar generation, but can be reduced
when the time series of wind and solar generation are correlated
with the load. Additionally, we see that it is possible to estimate
the effects of various fractions of wind and solar generation (&
and ) on the cost function based solely on knowledge of the
statistical properties of the three time series, L(T), W(¢), and
S (#), normalized to their means. Details of how these time se-
ries were computed will be provided in the subsequent sections.

4.2. Data Processing

The load timeseries was obtained directly from PJM via Data
Miner 2, as discussed in section 3.4. The data consisted of
hourly demand in MW for the year 2017. The load data were
normalized to their annual mean, as in Eq 2. This data is an
aggregate for the entire PECO region. For wind and solar re-
sources, which exhibit inherent spatial variability, time series
were aggregated to produce a single representative time series
for generation in the entire region.

In the case of the PECO region, a total of 9 solar power facil-
ities greater than 1 MW in rated capacity were present (see sec-
tion 3.2). Of these sites, 5 that spanned the entire region were
selected to represent the spatial distribution of the solar resource
(see Fig 4). No wind installations larger than 1 MW were found
within the PECO footprint, so the same 5 sites were also used
as sources for wind speed data. Solar irradiance data were ob-
tained from the NSRDB, as described in section 3. Wind speed
data were obtained from MERRA-2 at a height of 10 m and
were extrapolated to 100 m using the common Hellmann expo-
nential relationship (44):

v h\*

— == 6

2= () ©
where v is the velocity of interest at height A, vy is the known
velocity at height /iy (10 m in this case) and «a is the friction

coefficient, which depends on the ground condition. For this
study, a friction coefficient of 0.3 was used.

For both solar and wind generation, resource data from the 5
distributed sites were used as input to power generation mod-
els. The hourly power produced by each of the 5 sites was av-
eraged to generate a single aggregate time series for each type



Figure 4: Map of the 5 representative weather locations. Credits: Open-
StreetMap contributors, QGIS Desktop.

of renewable energy generation. The models used to estimate
generation from irradiance or wind speed are detailed in the fol-
lowing sections. Details of the calculations for the comparison
data in Oldenburg, Germany may be found in (32).

4.2.1. Solar Power Production

Modeling of solar PV energy production was performed us-
ing NREL PVWatts, via the open source System Advisor Model
(SAM) package'!. PVWatts uses a simplified model of PV gen-
eration (45) that does not account for detailed technical charac-
teristics of the modules or inverter used. The NSRDB irradi-
ance data were used as an input to the model. For this study,
we modeled each system with a capacity of 1.2 MW at a 20°
tilt, facing due south. We used the default values for the various
losses computed by the tool. This resulted in a system with an
annual energy yield of around 1300 kWh/rated-kW and a capac-
ity factor of 15%. As discussed, the production at 5 sites was
aggregated and normalized to its mean to represent the baseline
PV generation.

4.2.2. Wind Power Production

The MERRA-2 wind speeds at 10 m were extrapolated to 100
m using the exponential law discussed previously. The relation-
ship between wind speed and produced power was modeled us-
ing a simplified cubic model, as in previous work on FlexiGIS
(32).

P.%  forv <,
for v, < v < vu @)
0 forv > v,

Here v is the wind speed, P, and v, are the rated power and
wind speed of the turbine respectively, and v,,, is the cutout

Uhttps://sam.nrel.gov

wind speed. For this study, parameters were obtained for a
Gamesa G83 2MW turbine, a model used in wind installations
located in other parts of Pennsylvania'?. Parameters used for
this turbine were P, = 2MW, v, = 13.5% and v, = 25%. As
with solar power, generation for the 5 sites was aggregated and
normalized to its mean value. The resultant energy yield for
wind was around 1400 kWh/kW rated installed capacity, with a
capacity factor of around 16%. The PECO region encompasses
wind resources reported by the NREL Wind Prospector!? to be
of Wind Power Class 1 and 2.

5. Results and Discussion

Referring to Eq. 5, it is clear that without renewable gen-
eration (i.e. when « and B are zero), the variance reduces to
the variance of the load: o = o7. Though this is significant
in an absolute sense, it renders comparison of renewable opti-
mization on multiple sites difficult, because the cost function
contains differences in the variability of the base load between
the two sites. In other words, the variance of the load represents
the cost of storage required to create a flat load time series in
the absence of renewable generation. So for the purposes of
results comparison, we will subtract the standard deviation of
the load from the cost function. As this is simply a constant
offset for each case, it has no effect on the variation of the cost
with respect to renewable penetration or mix. However, it is
still worth noting that the absolute value of the load variance is
still of importance in representing undesirable variability in the
existing load prior to renewable deployment.

The modified cost function plotted in the subsequent figures,
ok, can be thought of as the degree to which renewable gener-
ation increases or decreases the need for balancing energy rela-
tive to the status quo of the existing demand.

Opr=0R— 0} (®)

In establishing the context for the results, it may be useful to
consider the patterns of the time series for the load, along with
wind and solar generation. The mean load for Philadelphia in
2017 was observed to be 4542 MW (annually, around 40 TWh).
A sample hourly time series for a single week is shown in Fig.
5b. In both cases we can see that solar and wind generation both
seem roughly correlated, peaking during the day and dropping
off at night (all the way to zero in the case of solar). Oldenburg
exhibits more hours spent at the rated wind speed, resulting in
clipping of the wind speed profile on the high end.

Referring to Fig. 6, we can also see the annual correlation be-
tween renewable generation and the load. One difference that
is plainly visible is that Oldenburg exhibits a load profile that
peaks during the winter months, while Philadelphia’s profile re-
tains a slight peak during winter, but also exhibits a larger peak

2https://eerscmap.usgs.gov/uswtdb/
Bhttps://maps.nrel.gov/wind-prospector/
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Figure 5: Snapshot of hourly time series of load, wind and solar generation.

during summer months, corresponding to higher air condition-
ing load. Both cities demonstrate wind generation that peaks
during winter and declines in summer. Solar in both cases ex-
hibits the opposite trend, peaking in the summer months, but
this effect is much more pronounced in the Oldenburg case. On
an annual basis, this amounts to a greater correlation between
solar and load in Philadelphia, than in Oldenburg.

In Fig. 7, we plot the cost function relative to both the frac-
tion of energy imported from the grid (i.e. (C)), and the relative
mix of solar and wind within the fraction of distributed renew-
able generation. Both sites show some similar characteristics.
In both cases, we see that the variability is dependent on the
exact mix of renewables used. For a fixed level of grid indepen-
dence, Oldenburg exhibits the lowest variability when using a
renewable mix of around 80% wind 20% solar, while Philadel-
phia favors a mix that is closer to even, around 50%-50%. In
general, we see that both sites exhibit increased variability in
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Figure 6: Aggregate monthly time series of load, wind and solar generation.

the residual load with decreased reliance on the grid (moving
leftward on the figure). However, we can also observe that
Philadelphia encounters the same levels of variability at much
lower levels of grid independence, which is to say that Olden-
burg can tolerate a higher renewable contribution with less need
for balancing. We may partially explain this effect by consider-
ing Fig. 6. In the Oldenburg case, we see that the wind's annual
profile matches well with load, while in Philadelphia, the load's
combined winter and summer peaks do not match neatly with
either renewable generation profile. Deeper analysis of this ef-
fect, which includes the daily variation, can be performed by
considering the underlying statistical metrics from the time se-
ries.

Referring to Table 1, we can gain some mathematical under-
standing of the results discussed in the preceding figure. Three
metrics in the table show noticeable differences between the
two sites: the load in Oldenburg has a higher standard deviation
than that in Philadelphia, the wind generation in Oldenburg has
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Figure 7: Contour plot of the required balancing energy as a function of energy
imported from the grid, and the fraction of the renewable generation that is
wind.

Table 1: Statistical results for the various time series, compared between the
two sites. All quantities are unitless, as they are based on normalized time
series.

Oldenburg, Germany | Philadelphia, US
o | 0.340 0.196
oy | 0.815 1.43
os | 1.61 1.44
o | 0.209 0.054
pis | 0.141 0.171
Psw | 0.320 0.324

a lower standard deviation than that in Philadelphia, and the
wind generation in Oldenburg has a much higher correlation
with the load than in Philadelphia. We can also observe that the
solar energy in Oldenburg is slightly less correlated with the
load than that in Philadelphia.

The analytical formulation of the optimization model allows
us to confirm that these statistical metrics are consistent with
characteristics that we observe in the optimal mix plot in Fig.
7. Relative to Philadelphia, Oldenburg’s wind time series is
both less variable and better correlated with the load, and as
a result, Oldenburg’s optimal mix exhibits a preference toward
wind. Some basic testing of sensitivity to these metrics shows
that the effect of the reduced variance is the stronger driver of
this preference.

The primary interpretable result from this data is that in both
the cases of Oldenburg and Philadelphia, it is possible to de-
termine an optimal mixture of distributed renewable generation
that minimizes the required balancing energy as measured by
the induced variability in the residual load. Relative differences
between the two cities can be identified by considering the sta-
tistical relationships between the load, wind and solar genera-
tion time series; the stronger correlation between the wind and
the load time series appears to be a driver in the optimal mix
for Oldenburg favoring wind generation. We also observe that
Philadelphia has the same relative increase in required balanc-
ing load at around 43% imported energy (57% renewable gen-
eration) as for the full renewable case in Oldenburg. According
to the statistical model, this could primarily be attributed to in-
creased variance in both the load and wind time series, as well
as the lower correlation between wind and the load. For the
models used here, meeting this scenario (approximately 28.5%
of the annual load met via solar, 28.5% by wind, and 43% from
other sources) would require around a rated 8.7 GW of installed
solar and a rated 8.1 GW of wind.

From these results, we can also offer some example analy-
sis related to energy policy. In order to minimize the require-
ments for additional load balancing, under current conditions,
Philadelphia should favor a strategy that uses roughly an even
mix of distributed solar and wind. At a level of imported en-
ergy of around 65%, the balancing energy is roughly twice that
required to balance out the current load (o for the baseline is
around 0.2), while it would be expected to triple the current
level for a 50% renewable scenario. While balancing energy in
a sustainable context could take the form of storage to provide
time shifting of overgeneration, demand deficits could also be
met through other forms of renewable generation that can be
operated in a dispatchable manner, such as hydroelectric power
or combustion of biomass.

Additional analysis may be performed through deep inspec-
tion of Eq. 5 via simple statistical terms. One strategy that may
be expected to reduce the requirement for balancing load is de-
mand management policies aimed at increasing the correlation
between the load and wind or solar generation, as these corre-
lations appear with negative coefficient in the equation. Addi-
tionally, we observe that the required balancing energy can be



expected to decline with decreased variance in both the wind
and solar time series. One example of such an approach would
be reducing the rated speed of the wind turbine in the genera-
tion model, which increases the amount of time that the power
output is “capped” in Eq. 7, thereby reducing the time series
variance. Given that the Philadelphia region has at best a Class
2 wind resource, it may be reasonable to consider a turbine with
a lower rated speed. Fig. 8 depicts a contour plot of the re-
quired balancing energy for Philadelphia subject to an alternate
wind turbine performance model with a lower rated speed of
v, = 117 (around v,e + 67 (46)). We can observe that, from
a meteorological point of view, the optimal ratio of wind to so-
lar shifts to favor wind (about 60% wind, 40% solar), and we
can achieve a greater degree of energy independence than in the
initial case. We see a comparable balancing energy requirement
at 38% imported energy for the modified turbine as with 43%
imported energy in the original case.

It is important to note that this essentially amounts to curtail-
ment that would reduce the overall power produced by a given
renewable energy system. For example, because of the cubic
dependence of power on wind speed, a wind turbine rated for
117 would be expected to produce only 54% of the energy as a
turbine with the same size and performance rated for 13.5%. So
meeting the same fraction of the load with installed wind capac-
ity would require a greater number of installations (85% more)
at this lower individual turbine rating, or else would require
larger (in physical size) individual installations. A similar effect
(albeit shifting to favor solar) would be expected if curtailment
were used to limit the variance in the solar generation. Because
curtailing generation to reduce the need for storage would re-
quire extra generation, the attractiveness of these options in an
absolute sense depends on the relative financial costs associated
with additional storage vs. generation.
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6. Conclusions

In this paper, we demonstrate that FlexiGIS, an open spatial-
temporal analysis tool that had been developed for a European
context, was able to be successfully applied to model optimiza-
tion of renewable energy mix in a United States context as well.
Differences in the availability of open resources between Eu-
rope and the United States prompted different choices for the
underlying data that served as the basis for the model. While
OpenStreetMap was previously used as an open data source for
calculations based in Europe, we found that it did not have com-
plete coverage in the case study (about 10% of buildings in a
more complete dataset). Rather, state-based open data sources
(Pennsylvania Spatial Data Access - PASDA, in this case) pro-
vided an alternative to OpenStreetMap data in the United States.
Though this data was found to be more complete, the decentral-
ized nature of the multilevel sources (e.g. state- or city-based)
in the United States may require some additional work on the
part of the user. Future investments by OpenStreetMap users
in aggregating available data sources may unify the data avail-
ability and ease the initial time commitment in acquiring data.
Regardless, in this case study, the direct availability of openly
available electrical demand time series for the PECO region
made the use of buildings to estimate the load superfluous.

A comparison was made between a previous European case
study in Oldenburg, Germany (32), and the City of Philadel-
phia, Pennsylvania in the United States. Philadelphia showed
a greater need for balancing energy under increasing renew-
able energy contribution level than did Oldenburg. Philadelphia
shows similar needs at a 57% renewable contribution as Olden-
burg shows under full renewable generation. On the other hand,
while Oldenburg heavily favored wind generation for this opti-
mal mix, Philadelphia had a relatively balanced optimal mixture
of solar and wind to minimize the cost function. This roughly
matched with expectations derived from the annual variation
in load, wind and solar generation observed in the aggregate
monthly time series. Recasting the cost function in terms of
the individual time series standard deviations and the correla-
tion coefficients between them allowed us to gain some addi-
tional insight from these observations, namely that the differ-
ence is primarily driven by the lower variance in the wind time
series, and its greater correlation with the load. We observe that
choosing a wind turbine with a lower rated speed to correspond
to Philadelphia’s lower wind resource class can shift the opti-
mum towards wind, and reduce the required balancing energy,
at a cost of requiring more (or larger) wind turbines to meet the
equivalent fraction of the load. This result provides additional
insight into the sensitivity of the model to various input param-
eters, and thus the “knobs” by which the results could be tuned
in different scenarios.

Advancing modeling of renewable energy systems based on
open data is important to enabling various energy stakeholders
to make data-driven decisions in planning, policy and admin-
istration of Urban Energy Systems. This paper presents a case
study by which we have broadened the scope in which FlexiGIS
has been applied, and demonstrated its flexibility to work with



alternate data sources and how it can be used to make judg-
ments about renewable energy in a setting in the United States.
Further work may consider improvements in the automation of
the process and reduce the need for user-driven pre-processing
of data for the analysis. Nonetheless, we believe the value in
demonstrating the tool may help improve access to sophisti-
cated analyses of Urban Energy Systems and reduce barriers to
energy planning and information dissemination.

Appendix

The complete script for performing the energy mix optimiza-
tion as well as sample input and output data sets are included in
the supplementary material provided with the present contribu-
tion. Normalized load and renewable generation data is stored
as an hourly time series in individual comma separated values
(CSV) files that are read by the code. Note that the load file pro-
vided is based on a simulated residential building in Philadel-
phia, as PJM’s data license does not allow for redistribution of
the load data that was used to generate the figures in the paper.

The code (remix_calculator.py) is developed for Python 3. It
requires the library numpy for calculations and uses scipy and
matplotlib to generate the figures. The script is published un-
der the 3-Clause BSD (Berkeley Standard Distribution) open
source license. Required balancing energy is computed for a
series of wind and solar mixtures, as well as overall renew-
able energy fraction. Intermediate results are saved to stan-
dard_deviations.csv. A contour plot similar to Fig. 7 is gener-
ated for an example of visualization. All developed codes and
supplementary data associated with this article can be found at
Github FlexiGIS_Philadelphia.
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