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We examine combustion controlled predominantly by chemical kinetics using var-

ious incarnations of the Well Stirred Reactor. The model is presented in canoni-

cal forms exhibiting first- and higher-order responses to both flow rate and mixing

perturbations. These behaviors are completely characterized by physically relevant

dimensionless quantities. Furthermore, because of their relevance to thermo-acoustic

instabilities, we generate quasi-minimal degree-of-freedom formulations relating in-

let conditions and heat release rate for both single-step and generalized multi-step

chemical kinetic models.
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Nomenclature
β . . . . . . . . . . . . . .Thermal eccentricity
Γ . . . . NSH WSR reaction sensitivity
ν′i,j . . . . . . . . . . . . . Reactant rxn. coef.
ν′′i,j . . . . . . . . . . . . . . Product rxn. coef.

φ . . . . . . . . . . . . . . Species rxn progress

ψ . . . . . . . . . . . . .Thermal rxn progress
ρ . . . . . . . . . . . . . . . . . . . . . . . . . . . Density
τc . . . . . . . . . . . . . . . . . . . Chemical time
τr . . . . . . . . . . . . . . . . . . .Residence time
ζi . . . . . . . . . . . . . Reaction rate spec. i

1



A . . . . . . . . . . . . . . . . . . . . . State matrix
B . . . . . . . . . . . . . . . State input matrix
C . . . . . . . . . . . . . . State output matrix
ĉ . . . . . . . . . . Specific heat eccentricity
cp . . . . . . . . . . . . . . . . . . . . . Specific heat
cp,r . . . . . . . Specific heat of reactants
cp,p . . . . . . . .Specific heat of products
cp,i . . . . . . . .Specific heat of species, i

Da . . . . . . . . . . . . . Damköhler number
h . . . . . . . . . . . . . . . . . . . . . . . . . Enthalpy
hp . . . . . . . . . . . . Enthalpy of products
hr . . . . . . . . . . . . Enthalpy of reactants
hi . . . . . . . . . . . . . . .Enthalpy of spec. i
∆h . . . . . . . . . . . . Enthalpy of reaction

ṁ . . . . . . . . . . . . . . . . . . . . . . . . Mass flow
MWi . . . Molecular weight of spec. i

P . . . . . . . . . . . Transformation matrix
qj or q . . . . . . . . .Reaction rate vector

Q . . . . . . . . . . . . . . . . . Heat release rate

R . . . . . . . . . Normalized reaction rate

R̂ . . . . . . .Dimensionless reaction rate
s . . . . . . . . . . . . . . . . . . Laplace variable
T . . . . . . . . . . . . . Reactor temperature
Ta . . . . . . . . . . Activation temperature
Tinlet . . . . . . . . . . . . . Inlet temperature
∆T . . . . . . . . . . Adiabatic change in T

u . . . . . . . . . . . . . . Mass flow excitation
U . . . . . . . . . . . . . . . .State input vector
v . . . . . . .Equivalence ratio excitation

V . . . . . . . . . . . . . . . . . . Reactor Volume
Vi,j or V . . . . . . . . . Rxn. coef. tensor

X . . . . . . . . . . . . . . . Linear state vector
Yi or Y . . . . . . . .Mass fraction vector
Yi,inlet . . . . . . . . . . Inlet mass fractions

∆Yi . . . . . . . . . Adiabatic change in Yi
Z . . . . . . . . . Transformed state vector

1. Introduction

A wide variety of incarnations of the Well Stirred Reactor (WSR) exist to de-
scribe the dynamics of chemical kinetics in a homogeneous reaction region. Though
these are as varied in formulation and in solution as the reactions they describe,
there are common behaviors that bind them and that imply simpler, canonical for-
mulations might be possible. In the case of kinetically controlled combustion, the
WSR is singularly appropriate, since its very formulation places focus on the chem-
ical kinetics while minimizing all transport phenomena save convection. Further-
more, it is typically heat release rate that is of primary importance to a combustor,
so it is with that in mind that we study the dynamics that separate velocity and
mixing perturbations and the heat release rate of a homogeneous reaction region
using the WSR.

The WSR’s derivation is predicated on the assumption that all transport phe-
nomena in the reactor are significantly faster than the chemical reaction rate. While
the ability to ignore spatial gradients and model reacting flows with ODEs instead
of PDEs makes the WSR quite attractive transport times only out-pace chemical
times when the turbulent Damköhler number is less than unity[1, 16].

As we shall reiterate here, one must be very cautious when using WSRs to
capture dynamic heat release since they are very poor predictors of the behaviors in
most practical combustion systems. For systems in which WSRs are appropriate,
however, there are a number of common simplifying assumptions whose impact
on the flame dynamics can be parametrically quantified. Here, we derive canonical
forms for the WSR subject to velocity and mixing perturbations and show the linear
dynamic characteristics for three of the most common realizations for the WSR:

1. The Simple WSR
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constant cp, single step reaction rate, constant volume,

2. The Non-Simple Enthalpy WSR

cp is variable across species and temperature, single step reaction rate, con-
stant volume,

3. The Mutli-Step Chemical Kinetic WSR

constant cp, n-step chemical kinetics.

In each case, we quantify the impact of the various thermal and chemical kinetic
properties that are introduced to the system with dimensionless parameters where
possible.

1.1 Background

The WSR has been the object of countless investigations into the dynamics of
chemically reacting flows.

Good progress has been made with the WSR in the field of thermo-acoustic in-
stabilities in gas turbines. Since pressure oscillations in these systems have proven
to be a small percentage of the mean[4], the WSR has no dependency on the momen-
tum equation and the dynamics are somewhat simpler than in works when pressure
oscillations are important. Liewen et. al. studied the effect of flow rate oscillations[5]
as well as mixture oscillations[5]. Park et. al. applied linearized WSRs in a system-
level model with simple single-resonance acoustics to predict instabilities[15]. Mar-
tin used DC gains predicted by the WSR to predict the onset of instability in a
model combustor[9]. This entire field has been recently reviewed by Huang and
Yang[3].

Similar parallel efforts with the WSR can be found in chemical engineering fields.
For example, Mahmoud and Fahim[8] and Ogawa et. al.[10] both use linearized WSR
models to design and characterize control systems given a particular reactor and
reactants. Additionally, Engell and Klatt develop controls for the non-minimum
phase behaviors that can be exhibited by the linearized WSR[2].

A number of researchers have also investigated the non-linear characteristics
of the WSR. Works by Park and Vlachos[14], Lignola and DiMaio[6], Olsen and
Vlachos[11], and Olsen and Epstein[12, 13] detail a wide variety of nonlinear char-
acteristics exhibited by various encarnations of the WSR. These include saddle-node
bifurcation behaviors observed in constant-pressure combustion[14], cataloging the
existence of stable and unstable orbits in phase space[11], analysis of static[12] and
unsteady[13] characteristics, and an investigation of the reactor’s initial condition
response and its dependence on the model’s assumptions[6].

In all cases, great value is placed on modeling the static and the linear reactor
behaviors. Olsen and Vlachos[11] exemplified how the reactor’s linear behavior local
to equilibria offers the first insights into the nearby orbits in phase space[19]. Sim-
ilarly, the most accurate predictions available regarding thermo-acoustic stability
are based on linear stability. This in mind, in this work we discuss general linear
characteristics of the WSR and their implications.
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1.2 Formulation

WSRs have two basic assumptions that have classically been inherent to their
formulation;

1. Turbulent mixing in the reactor is so strong that spatial gradients may be
ignored,

2. The volume of the reactor is a constant.

These assumptions have been mapped[1, 16] into dimensionless static operating con-
ditions to demonstrate that the WSR is appropriate when the turbulent Damköhler
number,

Dat =
τt
τc

(1)

is much smaller than 1. Here, τc is the chemical time scale, and τt is the turbulent
time scale, defined by the flame length scale in ratio with the turbulent velocity,
τt = L/u′. We shall refer back to this to help place limits on the domain over which
WSR solutions are valid.

The energy equation Neglecting significant variations in pressure, the energy
equation can be written as

cpṪ + τ−1
r

∑

i

Yi,inlet (hi − hi,inlet) = −
∑

j

hjζj , (2)

where ζj is the rate of formation of species j in mass per unit time per unit mass of
fluid. Exactly how ζi is calculated depends on the chemical kinetic mechanism. The
three terms describe how thermal energy is accumulated, convected, and generated
from reaction. The coefficient appearing in front of the convective term, τr, is the
residence time in the reactor, given by V ρ/ṁ0.

The heat release rate can be derived from the source term on the RHS of Equa-
tion 2, which represents the heat release per unit mass of fluid in the reactor.
Multiplying by the mass in the reactor yields

Q = −ρV
∑

i

hiζi. (3)

The species equation The conservation of species can be similarly formulated

Ẏi + τ−1
r (Yi − Yi,inlet) = ζi, (4)

where Yi is the mass fraction of species i, and ζi is its rate of formation. Sim-
ilarly to the energy equation, the three terms that appear represent the specie’s
accumulation, convection, and generation due to reaction.

4



General chemical kinetics In general, a chemical mechanism is given as a series
of reactions appearing in the form

(1) ν′A,1A+ ν′B,1B + . . .→ ν′′A,1A+ ν′′B,1B + . . .

(2) ν′A,2A+ ν′B,2B + . . .→ ν′′A,2A+ ν′′B,2B + . . .

...

so that ν′i,j and ν′′i,j represent the coefficient of species i on the LHS and RHS
(respectively) of reaction step j. Chemical kinetic mechanisms typically define
some way of computing the number of reactions per unit time per unit mass of fluid
for each of the reaction steps. Given these rates in a vector, qj , ζi is given by

ζi =
∑

j

Vi,j qj (5)

when Vi,j = MWi(ν
′′

i,j − ν′i,j).

2. Simple Well-Stirred Reactor

The first of the reactors we consider herein assumes constant, species-independent
specific heat and a single step reaction mechanism. As mentioned above, a number
of researchers have considered simplified WSRs in various forms to produce dynamic
heat release rate predictions in gas turbine engines.

When the reaction mechanism includes only one step, the formation and deple-
tion of all species occurs proportionally, as determined by the coefficients, Vi,1. This
allows the RHS of Equation 2 to be simplified, yielding

cpṪ + τ−1
r

∑

i

Yi,inlet (hi − hi,0) = −∆hfζf (6a)

Ẏi + τ−1
r (Yi − Yi,inlet) = ζi. (6b)

where the fuel heat release is given as a function of reactor temperature by

∆hf =
∑

i

Vi
Vf

hi. (7)

Here, Vi,1 is abbreviated to Vi since there is only one reaction step.
With the application of constant and equal specific heats, the energy equation

becomes

Ṫ + τ−1
r (T − Tinlet) = −

∆hf
cp

ζf (8)

Since the species equation is independent of the fluid’s thermal properties, it is
unaffected.

Equations 8 and 6b are so similar with respect to the state variables that they
can be reduced to a single equation on a single state variable. Consider the reaction
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progress variable employed in the analysis of plug flow reactors by Poinsot and
Veynante:

T = Tinlet + ∆Tφ (9)

Yi = Yi,inlet + ∆Yiφ. (10)

Here, φ is a scalar between 0 and 1 indicating the fractional progress from no
combustion to complete exhaustion of the fuel. The ∆T and ∆Yi parameters refer to
the change in temperature and mass fraction of species i respectively for “complete”
combustion. They can be solved in terms of the enthalpy of reaction and the inlet
fuel mass fraction by

∆T =
∆hf
cp

Yf,inlet

∆Yi = −
Vi
Vf
Yf,inlet.

Thus, the fuel mass fraction is given by Yf = (1 − φ)Yf,inlet . Substituting these
quantities into equation 8 and 6b yields identical equations,

φ̇+ τ−1
r φ = R(φ) (11)

In Equation 11, the function, R(φ) has units s−1 and is derived from ζi by

R =
ζi

∆Yi

[

= −
ζf

Yf,inlet

]

= −
∆hf
cp∆T

ζf .

It is important to note that dynamic perturbations in mass flow to the reactor
will manifest themselves in Equation 11 through the appearance of ṁ0 in τr. It can
be shown that such perturbations would appear as

φ̇+ τ−1
r (1 + εu)φ = R(φ), (12)

where ε u is the fractional change in mass flow, ṁ1/ṁ0, and ε is a positive di-
mensionless scalar amplitude of the excitation. In this way, the total mass flow is
ṁ = ṁ0 + ṁ1(t).

Equation 12 can be further manipulated by using a non-dimensional time scale,
t̂ = t/τr. We can also define a non-dimensionalize reaction rate, R̂ = τcR, where
the chemical time, τc, is defined, such that max(R̂) = 1. Then, Equation 11 can be
rewritten as

φ′ + (1 + εu)φ = Da · R̂(φ). (13)

Here, the prime denotes differentiation on t̂, and Da is the convective Damköhler
number,

Da =
τr
τc

=
τt
τc
I = DatI. (14)

6



The convective Damköhler number differs from the turbulent Damköhler number
only in its use of the bulk velocity, τr = L/U , instead of turbulent rms velocity,
τt = L/u′. Therefore, the two can be related by the turbulence intensity, I = u′/U.

If the reaction progress is further expanded in a Taylor series on ε, Equation 13
appears

εφ′1 + (1 + εu)(φ0 + εφ1) + . . . = Da · R̂(φ0 + εφ1 + . . .).

We obtain equations governing the steady and linear unsteady components of the
solution by expanding and grouping like powers of ε.

φ0 −Da · R̂(φ0) = 0 (15)

φ′1 + φ1

[

1 −Da · R̂′(φ0)
]

= −φ0u (16)

Characteristics By assuming constant and equal specific heats with a single-step
reaction rate, Equations 15 and 16 demonstrate that the WSR can be simplified to a
first order, single degree of freedom system described by only two parameters. The
first and most straightforward is the Damköhler number. Secondly, the shape of the
function, R̂, also influences the static and especially the dynamic characteristics.

In any discussion of a WSR’s characteristics, it is important to begin by noting
that there are limits on values of Da for which the model is valid and for which the
model even has a solution. The smallest Damköhler number for which there is a
solution to Equation 15 is referred to as the blowoff point. Mathematically, blowoff
can be defined as the condition at which the sensitivity of φ0 relative to changes in
Da is infinite or at which the solution is also an inflection point. By differentiating
Equation 15 with respect to φ0 a little bit of manipulation reveals that the reaction
progress and Damköhler number at blowoff are the solutions to

φbo
R̂′(φbo)

R̂(φbo)
= 1

Dabo =
φbo

R̂(φbo)
.

We can observe by inspection that Dabo will be on the order 1. In fact, Dabo is
close to, but slightly less than 1 for most combustion models.

The blowoff limit, Da > Dabo, is a hard lower bound on Da. The well known
work by Borghi[1] indicates an upper bound since the assumptions inherent to the
WSR are only valid when Dat � 1. Using Equation 14 to relate Dat to Da, we
conclude that the Simple WSR can only be used when

Dabo < Da < I. (17)

This regime only becomes substantial when I � 1, which is rare in practical com-
bustion systems.

We may characterize the frequency response of heat release rate by deriving
an analytical relation between ṁ1 and Q1 in the expansion of heat release rate,
Q = Q0 + εQ1 + . . .
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Figure 1: A typical reaction rate, R̂ = τcR, as a function of φ

Applying a Laplace transform to Equation 16 yields the transfer function be-
tween u and φ1,

φ1

u
=

−φ0

τrs+ (1 −Da · R̂′)
.

If we solve for the transfer function between mass flow and heat release, we obtain

Q1

ṁ1

=
Q1

ṁ0u

= [cp∆Tφ0]
−Da · R̂′

τrs+ (1 −Da · R̂′)
. (18)

Equation 18 exhibits very simple first-order dynamic characteristics shown in
Table 1. Since the system is only first order, the manner in which it will couple
with the surrounding acoustics is completely defined by its cutoff frequency and
its DC gain. It is also immediately apparently precisely how important both Da
and the shape of R̂ are to determining the dynamic response. A typical Arrhenius
expression for R̂, which we shall use to study Equation 18, might look like the curve
in Figure 1. Its precise shape is dependent on the various empirical parameters
used in its definition, so that the characteristics of the WSR will also be implicitly
dependent on those parameters as well.

Cutoff frequency Equation 18 has a single pole corresponding to a frequency of

fc = (2πτr)
−1
[

1 −Da · R̂′(φ0)
]

. (19)

The location of the pole in the complex plane and the system’s total frequency
response is depicted in Figure 2.

For large Damköhler numbers, the cutoff frequency is dominated by the second
term in the brackets and can therefore be estimated by −(2πτc)

−1R̂′. It is important
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Figure 2: Simple WSR root locus and frequency response. The pole trend with
respect to Damköhler number is notated on the root locus diagram with a labeled
arrow.

to note that this frequency does not correspond to the chemical time. Though the
chemical time appears as a parameter in the expression, this term can vary anywhere
from 0 to 102 times faster than the chemical time scale, depending on the value of
R̂′(φ0). This is the apparent “stiffness” of the flame due to the sensitivity of the
reaction rate and not chemical delay. Accepting a single-step reaction mechanism
precludes including any real chemical dynamics. Therefore, a Simple WSR’s cutoff
frequency scales with the chemical time scale for the values of Da for which the
WSR is most valid.

These results can be quantified if we use a simplified Arrhenius form for the
reaction rate expression,

R̂(φ) = A exp

(

−
Ta
T

)

(1 − φ)
m

T = ∆Tφ+ Tinlet,

the parameter, m, defines the reaction rate’s sensitivity to the extinction of fuel.
Figure 3 shows the Strouhal number as a function of Da for various values of m.
The dotted lines shows the same curve using the large Damköhler number estimate.
This indicates the strong impact that the shape of the reaction rate function can
have on the dynamics even for values of the Damköhler number on the order 10.
More importantly, Figure 3 also indicates that there is no range of Da over which
the Simple WSR comes even close to exhibiting cutoff frequencies at a constant
value of Str.

DC gain The DC gain of the system is taken as the linear change in reaction rate
per change in mass flow to the reactor.

For large Damköhler numbers, the DC gain shown in Table 1 can also be simpli-
fied. In the limit as Da → ∞, the DC gain approaches cp∆Tφ0. The total energy
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Figure 3: Strouhal number (Str = fc ∗ τr) as a function of Damköhler number for
various values of m.
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Figure 4: DC gain normalized by its asymptotic value (φ0cp∆T ) and plotted with
respect to Da. The embedded plot shows the gain plotted over narrow ranges of
Da for various values of m.

per unit mass available from combustion of the incoming mixture is represented by
cp∆T . Since φ0 indicates the fraction of fuel combusted, cp∆Tφ0 is the heat release
per unit mass of mixture at the current operating condition. As the Damköhler
number decreases, however, this intuitive estimate becomes less acurate.

Figure 4 shows the DC gain as a function of Damköhler number, normalized by
the large-Da gain estimate. The embedded plot shows the minute changes in gain
that occur at low Damköhler number with respect to changes in m.

Summary

• DC gain is much less sensitive to the shape of R̂ than the cutoff frequency,

• cp∆Tφ0 is an excellent estimate of DC gain for Da > O(10),

• Close to blowoff, R̂′ changes sign, causing the DC gain to also change sign,

• The Simple WSR’s cutoff frequency does not scale like experimental swirl-
stabilized flames.

3. Non-simple Enthalpy WSR
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Table 1: Dynamic characteristics of the constant-cp, single-step kinetic WSR. Poles
and zeros are reported in real units (rad/s) and the DC gain is also reported in real
units (energy/mass). The right-hand column shows the estimated parameters for
large Da.

Explicit Estimate (Da→ ∞)

Poles
−τr

−1
(

1 −Da · R̂′(φ0)
)

τc
−1R̂′(φ0)

Zeros ∞ ∞

DC Gain −Da · R̂′(φ0)

1 −Da · R̂′(φ0)
cp∆Tφ0

φ0cp∆T

Assuming constant and equal specific heats has long been applied because of the
accompanying simplifications. The implications on the static reactor are relatively
self evident, but exactly how relaxing this rigid constraint will affect the reactor’s
dynamics is not obvious from inspection. This will mean a migration from thinking
of the enthalpy of species as parallel lines to thinking of enthalpy as a surface with
dependencies on the temperature and composition of the fluid.

Since we retain the single-step reaction mechanism, Equations 6b and 6a apply,
but with three very significant differences.

1. The specific heat is a function of both temperature and the fluid composition;

2. the enthalpy terms must remain empirical functions and cannot be further
simplified;

3. the enthalpy of reaction, based on its definition in Equation 7, is a function
of temperature.

Though all three of the above complications apply only to the energy equation, the
non-simple enthalpy curves produce an asymmetry in the equations that prevent
their collapse into a single equation on reaction progress. As a result, we may define
a separate reaction and thermal progress variables, φ and ψ, such that

T = T0 + ∆Tψ

Yi = Yi,0 + ∆Yiφ.

Similar to the Simple WSR, the progress variables are allowed to vary between 0
and 1 and is assumed to be 0 at the reactor inlet. In this case, ∆Yi has exactly the
same definition as in the case of the Simple WSR. Defining ∆T , however, is less
trivial.
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The enthalpy, which is generally given as a function of temperature and compo-
sition,

h(T, Yi) =
∑

i

Yi hi(T0 + ψ∆T ),

can be simplified to

h(ψ, φ) = (1 − φ) hr(ψ) + φ hp(ψ),

where hr and hp are the enthalpy curves for the reactants (φ = 0) and complete-
combustion products (φ = 1) respectively. To obtain the adiabatic temperature rise,
∆T , we enforce that the exiting enthalpy must be equal to the incoming enthalpy,
so that for complete combustion,

hr(0) = hp(1),

where ∆T is an implicit parameter in the product enthalpy. Generally, the inversion
must be performed numerically.

Nondimensionalizing as in the Simple WSR and substituting back into Equation
6a and 6b yields

(cp∆T )ψ′ + (hr(ψ) − hr(0)) = ∆h(ψ)Da · R̂(ψ, φ) (20a)

φ′ + φ = Da · R̂(ψ, φ). (20b)

Just as in the Simple WSR, R̂ = τc(Yf,0)
−1ζf . The new parameter, ∆h, is given by

∆h(ψ) = hr(ψ) − hp(ψ).

It is a fortunate consequence to separating thermal and species reaction progress
that the model can support not only mass flow perturbations but also perturbations
in the incoming composition. Thus, when writing the perturbed equations, we let

ṁ = ṁ0(1 + εu(t)) φinlet = 0 + εv(t).

It is worth commenting that there are as many ways of perturbing the incoming
mixture as there are species in the model, while the reaction progress approach
will only support perturbations such that Yi,0 = ∆Yiv. Though it is an inherent
limitation of reaction progress approaches that mass fractions are not allowed to
vary independently, it can be shown with analysis that is tangential to the present
discussion, that the relevant dynamics are still accurately represented.

The thusly perturbed reactor equations are

cp∆T εψ
′

1 + (1 + εu) {hr(ψ0 + εψ1) − hr(0) − [∆h(ψ) − ∆h(0)] εv} =

∆h(ψ0 + εψ1)Da · R̂(ψ0 + εψ1,φ0 + εφ1) + . . .

εφ′1 + (1 + εu)(φ0 + εφ1) − εv =

Da · R̂(ψ0 + εψ1,φ0 + εφ1) + . . . .
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After the necessary expansions, isolating like terms of ε, and several substitutions,
we are left with the steady and linearized unsteady equations of motion. The steady
system is given by

(1 − φ0)hr(ψ0) + φ0hp(ψ0) = hr(0), (21a)

φ0 = Da · R̂(ψ0, φ0). (21b)

The classic approach to solving these with minimal iteration is to assume a value for
φ0, invert Equation 21a to compute the corresponding value for ψ0, and finally use
Equation 21b to back-calculate the corresponding value ofDa. Thus, a mapping can
be made between the Damköhler number and the pair, (ψ0, φ0). Otherwise, if Da
is specified directly, both equations must be solved numerically and simultaneously.

The dynamic system is given by

ψ′

1 +
[

1 − βDa · R̂ψ

]

ψ1 +
[

−βDa · R̂φ

]

φ1 = −uβφ0 + (β − β0)v, (22a)

φ′1 +
[

−Da · R̂ψ

]

ψ1 +
[

1 −Da · R̂φ

]

φ1 = −uφ0 + v, (22b)

where β and β0 are defined as

β(ψ0, φ0) =
hr(ψ0) − hp(ψ0)

cp(ψ0, φ0)∆T
, β0(ψ0, φ0) =

hr(0) − hp(0)

cp(ψ0, φ0)∆T
. (23)

In the case of the Simple WSR, both the static and dynamic equations collapsed
conveniently on one another, but the the appearance of a thermal eccentricity, β,
produces an asymmetry that prevents further simplification. The thermal eccen-
tricity can be physically interpreted as the ratio of the adiabatic temperature rise
assuming constant properties with the actual adiabatic temperature rise. As a re-
sult, β is dependent upon the values of ψ and φ at which the operating conditions
are taken. The inlet eccentricity, β0, appears only as a coefficient of v in the en-
ergy equation and accounts for changes in inlet enthalpy as the incoming mixture
is varied.

Furthermore, if we take ψ0 to be a function of φ0 via the implicit function
theorem, differentiating the energy equation with respect to φ0 yields

∂h

∂ψ

dψ0

dφ0

+
∂h

∂φ
= ∆Tcp

dψ0

dφ0

− (hr − hp) = 0.

Therefore,

dψ0

dφ0

= β. (24)

Thus, the thermal eccentricity is an indication of how the static solution deviates
from the Simple WSR as depicted in Figure 5.
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Figure 5: Example static solution paths in state space for various hypothetical
enthalpy curves.

Heat release Just as with the Simple WSR, the heat release of the model is given
by

Q = ρ V ∆h τc
−1R̂,

but now, in addition to considering perturbations in R̂, there are also perturbations
to ∆h that cannot be neglected. The effect is quantified by the expansion of heat
release, Q = Q0 + εQ1 + . . ., where

Q0 = ṁ0∆hDa · R̂ (25a)

Q1 = Q0

[(

R̂ψ

R̂
+
ĉ

β

)

ψ1 +
R̂φ

R̂
φ1

]

. (25b)

The parameter, ĉ, is the dimensionless sensitivity of ∆h to changes in ψ and is
defined as

ĉ =
cp,r(ψ) − cp,p(ψ)

cp(ψ, φ)
.

This term has the effect of softening or stiffening the heat release rate’s sensitivity
to temperature by including perturbations in the temperature-dependent enthalpy
of reaction.

It should also be noted that 25b implicitly assumes that perturbations in ρ are
negligible to determining the dynamic heat release. It can be shown in a tangential
analysis that density perturbations generate terms at least two orders of magnitude
smaller than the predominant terms, and that their inclusion has no appreciable
affect on the combustor dynamics.
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State space Equations 22 are conveniently expressed in the state space form,

X′ = AX + BU

Q = CX, (26)

where the vectors, X and U are given by

X =

{

ψ1

φ1

}

U =

{

u
v

}

and the state matricies are formed from Equations 22 and 25b and are given by

B =

{

−βφ0 β − β0

−φ0 1

}

C = Q0

{

R̂ψ

R̂
+ ĉ

β

R̂φ

R̂

}

A =

{

−1 + βDa · R̂ψ βDa · R̂φ
Da · R̂ψ −1 +Da · R̂φ

}

.

A two degree-of-freedom system will exhibit two poles and, at most, one zero.
Fortunately, A is easily diagonalized via the linear transform, X = PZ, so that

Z′ = P−1APZ + P−1BU.

In the process of determining an appropriate diagonalizing transform, P, a term,
Γ = R̂ψβ + R̂φ, naturally appears. At this stage, its interpretation is not immedi-
ately obvious, but becomes quite significant once the transform is completed. If we
select P such that

P =
1

Γ

{

R̂φ β

−R̂ψ 1

}

P−1 =

{

1 −β

R̂ψ R̂φ

}

,

the matrix, P−1AP, is diagonal, and the system can be divided into two decoupled
differential equations,

z′1 = −z1 − β0v (27)

z′2 = (−1 +DaΓ) z2 − φ0Γu+
[

(β − β0)R̂ψ + R̂φ

]

v. (28)

The elements of Z = {z1 z2}
T can be computed in terms of X by asserting

that Z = P−1X, resulting in

z1 = ψ1 − βφ1 (29)

z2 = R̂ψψ1 + R̂φφ1. (30)

Recalling that small changes in the static solution obey dψ0/dφ0 = β, changes in z1
represent perturbations precisely normal to that curve in (φ, ψ) state space. Thus,
if z1 is constant, then the system is operating parallel to the static curve, and if z1
is zero, then the system is operating on the static curve.
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The second transformed state variable, z2, is simply the unsteady reaction rate.
These results also offer a physical interpretation for the parameter, Γ, since when
z1 = 0, z2 = Γφ1. Thus, Γ is the Non-simple Enthalpy equivalent of R̂′ from the
Simple WSR.

To complete the transform, the output, Q, must also be written in terms of Z.
Substitution of X = PZ into Equation 26 yields

Q1 = Q0

{

ĉR̂φ
Γβ

(

1

R̂
+ ĉ

Γ

) }

Z. (31)

It is also interesting to note that when ∆h is constant, Equation 31 reduces to
Q1 = Q0 z2/R̂. In other words, the fractional change in heat release becomes equal
to the fractional change in the reaction rate.

Frequency response to mass flow Because u does not appear in Equation 27,
when the system is subject to forcing from u, z1 = 0. That is certainly not because
a response involving a nontrivial solution for z1 is disallowed, but simply because,
despite the asymmetry in Equations 22, the forcing with respect to u does not excite
the mode that exhibits that behavior.

Redimensionalizing time and taking the Laplace transform of Equation 27, the
transfer function between u and z2 is given by

z2
u

=
−φ0Γ

τrs+ (1 −DaΓ)
. (32)

Finally, substituting into Equation 31, the total transfer function is

Q1

ṁ1

=
1

ṁ0

Q1

u

=∆hφ0

(

1 + ĉ
R̂

Γ

)

−DaΓ

τrs+ (1 −DaΓ)
. (33)

Equation 33 is almost identical to the Simple WSR except for the appearance of
Γ instead of R̂′ and the appearance of a correction factor 1 + ĉ R̂/Γ to account for
variations in ∆h. If constant and equal specific heats are imposed, β is one and ĉ
is zero, and we recover the Simple WSR transfer function.

Because the transfer function has only a single high-frequency pole, it can be
characterized by its DC gain and cutoff frequency, just as the Simple WSR. These
characteristics are summarized in Table 2. The cutoff frequency bears the same
behavior with respect to Da, but with an added implicit linear dependency on β
through Γ.

Frequency response to mixture At first glance, the mixture perturbations
have extremely different dynamic characteristics than their mass-flow counterparts.
Of the two modes of excitation, mixture perturbations are the only to excite the z1
mode, which exhibit a pole corresponding to τr. From the diagonal realization in
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Table 2: Dynamic characteristics of the Non-simple Enthalpy, single-step kinetic
WSR. Poles and zeros are reported in real units (rad/s) and the DC gain is also
reported in real units (energy/mass or energy/s). The right-hand column shows the
estimated parameters for large Da and small α.

Mass
Exact Estimate

Poles
−τr

−1 (1 −DaΓ) τc
−1Γ

Zeros ∞ ∞

DC Gain
∆hφ0

(

1 + ĉ
R̂

Γ

)

−DaΓ

1 −DaΓ
∆hφ0

(

1 + ĉ
R̂

Γ

)

Mixture
Exact Estimate

Poles
−τ−1

r

−τr
−1 (1 −DaΓ)

−τ−1
r

τc
−1Γ

Zeros
−τr

−1 1 + α+ ĉφ0

1 + α
−τr

−1(1 + ĉφ0)

DC Gain
−ṁ0∆h

R̂φ
Γ

(1+α+ĉφ0)
−DaΓ

1 −DaΓ
−ṁ0∆h

R̂φ
Γ

(1 + ĉφ0)
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Table 3: Non-simple Enthalpy WSR parameters, their definitions, and their physical
interpretations

Parameter Definition Interpretation

α
ĉR̂

Γ

(

1 −
β0

β

)

Quantifies the effect of varying
thermal eccentricity on WSR ze-
ros.

β
hr − hp
cp∆T

Thermal Eccentricity: the ratio
of actual adiabatic temperature
rise to constant-property temper-
ature rise.

Γ R̂ψβ+R̂φ
Reaction Rate Sensitivity: sensi-
tivity of the reaction rate to low-
frequency changes in φ.

ĉ
cp,r − cp,p

cp

Specific Heat Eccentricity: di-
mensionless sensitivity of ∆h to
changes in ψ.

Equations 27 and 28, the transfer functions for the state variables with respect to
v are

z1
v

=
−β0

τrs+ 1
(34)

z2
v

=
R̂φ

τrs+ (1 −DaΓ)
. (35)

Substituting them into 31 and performing the necessary manipulations, we arrive
at the total transfer function,

Q1

v
= ṁ0∆hDa R̂φ

(1 + α) τrs+ (1 + α+ ĉ φ0)

(τrs+ 1)(τrs+ 1 −DaΓ)
. (36)

The parameter, α, appears as a result of the algebraic manipulations required to
obtain Equation 36 and is given by

α =
ĉR̂

Γ

(

1 −
β0

β

)

.

This expression quantifies the impact of β variations across ψ on the zero location.
For most fuels, the ∆h bears only a weak dependence on ψ. As such, β0 ≈ β
and α ≈ 0. Furthermore, the impact of this assumption is somewhat mitigated
by the appearance of α both numerator terms of Equation 36. Inclusion of α is,
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Figure 6: Non-simple enthalpy dynamic response to inlet mixture perturbations.
The bode diagrams show frequency responses for several values of ĉ. The root locus
plot shows pole and zero locations for ĉ = 0 with the motions notated by labeled
arrows.

therefore important when ĉ is highly nonzero or when the fuel’s heat release is a
strong function of ψ.

The DC gain, poles, and zeros are summarized in Table 2 and depicted in Figure
6. Because z1 6= 0, equivalence ratio perturbations exhibit a true second-order
response with a single zero. The high-frequency pole that is present in both the
Simple WSR and the Non-simple Enthalpy WSR is still present, but in addition to
a low-frequency pole and a nearby zero.

The low-frequency pole corresponds to τr, regardless of other parameters. This
is representative of the classic first order mixing problem that exists even in the
absence of chemical reaction. Mass-flow perturbations avoid exciting such a mode
altogether, but perturbations in the incoming mixture composition are unavoidably
coupled with the mixing process.

The nearby zero, however, threatens to cancel the low-frequency pole. The
location of the zero is an artifact of the importance of reaction rate (z2) over any
other parameter in determining the heat release rate. Since z2 only responds with
the high-frequency pole, it is only by including a ∆h sensitivity to temperature
through ĉ that the zero moves from -1 and the low-frequency dynamics are revealed.

Figure 6 shows the trends in the pole and zero locations and their resulting
affects on the frequency response. It should be added that the curves shown on the
frequency response plot correspond to abnormally large values for ĉ. By comparison,
Methane-Air reactions exhibit a ĉ on the order -0.02. Regardless of the severity of
the behavior, this indicates that the appearance of low-frequency dynamics is highly
dependent on the thermal properties of the species present in the reaction.
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Summary The total dynamic characteristics are summarized in Table 2 using
dimensionless parameters defined in the above section and summarized in Table 3.
The chief behaviors of the Non-simple Enthalpy WSR are as follows:

• The Non-simple Enthalpy WSR exhibits one high frequency and one
low frequency pole with a single zero.

• Mass-flow perturbations force the zero and the low-frequency pole to
cancel, leaving only the high-frequency pole.

• Perturbations in the incoming composition place the zero close to the
low-frequency pole. The zero’s position is dependent primarily on ĉ,
so that when ĉ = 0, the zero exactly cancels the pole.

• The high frequency pole exhibits motion identical to the Simple WSR
plus an added linear dependence on β.

• The low-frequency pole is always at τr
−1.

• How severely the low-frequency dynamics affect the frequency re-
sponse is indicated almost entirely by ĉ. When ĉ = 0 the low-
frequency dynamics disappear.

4. Multi-step Chemical Kinetic WSR

The inclusion of multi-step chemical kinetics comes with the cost of severe com-
plications to the approach that has thus far provided very broad parametric charac-
terization of the WSR. Firstly, more complicated chemical kinetics introduce mul-
tiple reaction pathways and intermediate species so that the species scales, ∆Yi,
are no longer well defined. Secondly, there is no longer a single convenient chemical
timescale, but multiple chemical timescales so that the Damköhler number is no
longer the only relevant parameter. Lastly and the most crippling of all, the system
of equations is no longer conveniently analytically diagonalized without selecting a
specific reaction mechanism.

Though multistep systems are more complex, there are still a number of sim-
plifications that allow the system to serve as a broad illustration of the relevant
dynamics. In a system with n species and a chemical kinetic mechanism with
m reaction steps, the various reaction rate tensors and vectors have the following
properties:

ζ̃ ∈ R
n q̃ ∈ R

m V = {Vi,j} ∈ R
n×m

If we impose that all species have constant and equal specific heats, then Equa-
tion 2 and 4 can be written

Ṫ + τr
−1(T − Tinlet) = −

1

cp

∑

i

hi
∑

j

Vi,j qj (37a)

Ẏi + τr
−1(Yi − Yi,inlet) =

∑

j

Vi,j qj (37b)
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From Equation, 37a, the temperature rise from each step in the mechanism naturally
appears and is conveniently expressed in a vector,

H =

{

∆hj
cp

}

=

{

1

cp

∑

i

hiVi,j

}

.

If we consider the perturbed equations — this time without non-dimensionalizing
— we have that

εṪ1+ τr
−1(1 + εu)(T0 + εT1 − Tinlet) = . . .

− H · (q + εqTT1 + εqY · Y1)

εẎ1+ τr
−1(1 + εu)(Y0 + εY1 − Y0,inlet − εY1,inlet) = . . .

V · (q + εqTT1 + εqY · Y1) .

The steady and unsteady state variables can conveniently be grouped into state
vectors,

X0 =

{

T0

Y0

}

X1 =

{

T1

Y1

}

.

Therefore, by grouping like terms of ε, the steady and unsteady equations are

X0 − X0,inlet = τrA1 · q (38a)

Ẋ1 +
(

τr
−1I − A1 · J

)

·X1 = B ·U. (38b)

Here, A1, J, B, and U are simplified expressions from the above equations, given
by

A1 =

{

−HT

V

}

J =
∂q

∂X
U =

{

u
Y1,inlet

}

B =

{

−τ−1
r (T0 − T0,inlet) 0

−τ−1
r (Y0 − Y0,inlet) τ−1

r I

}

Some of these vector quantities have important interpretations. The reaction
rate Jacobian, J, is the matrix transform between the unsteady state vector, X1,
to the vector of reaction rates. The new input vector, U, includes mass flow per-
turbations and inlet perturbations for any of the n species and is introduced to the
system through the input matrix, B.

The output of the system is obtained by expanding Equation 3. After the
necessary substitutions, the unsteady heat release rate is

Q1 = −ρVH · J · X1. (39)

Unfortunately, it is not at all clear how the system represented in Equations
38b and 39 behaves without selecting a specific chemical model. Since the purpose
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of this analysis is to form broad, useful conclusions regarding the WSR that are
independent of particular fuels or kinetic models, limiting conclusions to how the
reactor behaves with respect to a specific mechanism would be unacceptably restric-
tive. We may note with no loss of generality, however, that if the dynamic reaction
rates are given by

q1 = J · X1,

then Equations 38b and 39 may be rewritten as

q̇1 = (−τ−1
r I + J ·A1) · q1 + J · B ·U (40a)

Q1 = −ρVH · q1. (40b)

Equation 40 is obtained by multiplying Equation 38b by J from the left and per-
forming the necessary substitutions. This is a state space realization with q1 as the
state vector. This transformation hinges on being able to commute J in Equation
38b using the identity J·I = I·J. If we modified Equation 37a to include non-simple
enthalpy effects, we would retain eccentricity coefficients in the energy equation and
would be left with a diagonal matrix with unequal elements instead of the identity
matrix in Equation 38b. Since the commutation of matrix multiplication is not
allowed when the diagonal matrix cannot be expressed as a scalar multiple of the
identity matrix, the transformation fails, and we recover the low-frequency fluid
mechanical dynamics observed in the non-simple-enthalpy WSR.

General characteristics Because the matrix, A1, is utterly dependent on the
choice of reaction mechanism, Equation 40 still represents a system that can exhibit
virtually any dynamic characteristics. However, the fact that the transformation,
q1 = J · X1, was successful provides a number of important implications.

A successful state space transformation cannot change the input-output rela-
tionship, nor subsequently, the transfer function. Since q1 ∈ R

m and X1 ∈ R
n+1,

and because m and n are unrelated, the transformation can change the order of the
system (the number of poles). The implication is that when the system is expressed
as a higher-order system, pole-zero cancellation must occur in the transfer functions
so that the total dynamic behavior is preserved. Thus, the order of the system, N ,
is less than or equal to the smaller of m and n+ 1.

The recognition that N ≤ min(m,n + 1) is simply reflective of the fact that
the reaction rates cannot vary with more degrees of freedom than there are state
variables in the original formulation. Similarly, the species and temperature cannot
vary with more degrees of freedom than there are independent reaction rates. It
should also be noted that it is still possible, though not likely, that the system can
be further reduced in order. This would imply that two or more of the reaction
steps are linearly dependent.

The fact that the transformed state of the system can be completely represented
by the reaction rates is also extremely suggestive. The transformation on the Non-
simple Enthalpy WSR in Section 3 exhibited two states. The first was an eccentric
state that deviated from the low-frequency operating curve while the second was
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simply the unsteady reaction rate. Of these two, the former was the only to ex-
hibit the low-frequency dynamics corresponding to the residence time. Equation
40 indicates that the Multi-step Chemical Kinetic WSR can be expressed indepen-
dently of any such state variable. Subsequently the residence time dynamics that
the Non-simple Enthalpy WSR exhibited will not appear in the frequency response
to Equation 38b.

Typical characteristics Typically, these systems will exhibit very high-frequency
poles as encountered by Park et. al.[15] and may exhibit zeros in a wide variety of
configurations. The poles may be resonant (complex), but are often heavily damped
enough to prevent an overshoot response.

Both pole and zero motion will occur with respect to the operating condition,
but precisely how is difficult to say. One consistent behavior is that at least one
pole will always approach the right-half plane as the operating conditions approach
blowoff. This corresponds to the approach to the saddle node bifurcation that exists
at the blowoff point[11].

We may exemplify these behaviors if we employ the two-step chemical kinetic
mechanism proposed by Westbrook and Dryer[20] to include incomplete CO - CO2

reaction,

CmOn +
(n

2
+
m

4

)

O2 → nCO +
m

2
H2O (41a)

CO +
1

2
O2 ↔ CO2. (41b)

Reaction 41a is one-way, while reaction 41b is allowed in reverse. Therefore, the
reaction rates from Westbrook and Dryer can be manipulated to the form

qa =Aa exp

(

−
Ta
T

)

YCmOn
aYO2

b (42a)

qb =Ab,f exp

(

−
Tb,f
T

)

YCOYH2O
0.5YO2

0.25 (42b)

−Ab,r exp

(

−
Tb,r
T

)

YCO2
,

wherein the affect of density variations are neglected since reaction rate sensitivity
to pressure is not needed.

Figures 7 and 8 show the response to velocity and equivalence ratio perturbations
respectively of the WSR using the above mechanism. These figures show three
poles and two zeros. The low-frequency poles and zeros that appear very close to
the origin in both figures are exactly −τr

−1. Because the thermal eccentricities
have been eliminated, they cancel exactly (as we derived via the transformation to
Equation 40).

The two remaining poles represent the dynamics of the fast and slow chemical re-
actions at roughly 9×1010rad/s and 2.6×1010rad/s respectively, and are unchanged
by the mode of excitation. Only the zero moves between velocity and equivalence
ratio excitations, but it is enough to change the character of the response. Just as
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Figure 7: Multi-step chemical kinetic model response to velocity input. The stacked
pole and zero that appear near the origin are at −τr

−1, but cancel exactly.

Figure 8: Multi-step chemical kinetic model response to equivalence ratio input.
The zoomed-in embedded plot is not to scale.
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we discussed in Section 2, there is an important distinction between the amount
of time it takes for a reaction step to be completed (the chemical time scale) and
how quickly that reaction rate will respond to changes in the reactor inputs (the
dynamic time scale). While they are related by the fact that a faster reaction will
have a faster time constant (shown in 2), they are not identical.

The results shown in Figure 8 imply that modelers attempting to use the WSR
in closed-loop systems for predictions on stability must be cautious. The Nyquist
and Bode criteria for assessing stability of a closed-loop system as investigated in
some detail by Sattelmayer and Polifke [17], make certain assumptions regarding the
nature of the system being studied. Among the most typical is that the system is
minimum-phase (no zeros in the right-half plane). As Figure 8 shows, it is not at all
unreasonable, however, for a flame to exhibit non-minimum phase behavior. In this
event, even the corrections the authors propose to classical methods [18] might be
incapable of accurately assessing stability without first knowing the number of zeros
in the right-half plane. If this problem is encountered researchers should reference
Engell and Klatt[2].

5. Conclusions

The linearized Well Stirred Reactor exhibits two types of separable dynamics.
The first and most significant are the dynamics due to sensitivities in the chemical
reaction rates. The second is the transient mixing that occurs in the reactor. For
most reactor models, the governing equations can be simplified to a system of very
few simple first-order equations with the Damköhler number(s) as the predominant
parameter(s).

The kinetically controlled dynamics are typically high-frequency and are highly
dependent on the chemical kinetic mechanism employed. At the frequencies for
which most thermo-acoustic instabilities are prevalent, these dynamics are fre-
quently sufficiently fast to be considered quasi-static except extremely close to
blowoff.

The transient mixing dynamics typically only exhibit minimal impact on the
frequency response if they are of any importance at all. Firstly, they only appear
in the response to equivalence ratio perturbations. When they do appear, given
the eccentricities of common fuels in Appendix B, they are only slight ripples in
the magnitude and phase that are not likely to severely influence the stability of a
closed-loop system. That these dynamics are almost completely absent in the WSR,
though they are believed to be vital to swirl-stabilized combustion [7], combined
with the argument that practical systems exhibit much lower Damköhler numbers
solidifies the conclusion that WSR’s are simply inappropriate without modification
for these systems.

The appearance of right-half plane zeros in Section 4 confound most of the
simplified methods for assessing stability (such as the Bode Criterion or even the
Nyquist Criterion) unless the precise number of zeros can be determined a-priori.
In the case of the WSR, we can accomplish exactly that, but if flames frequently
exhibit this non-minimum phase behavior, then the matter must be approached
with even greater care.
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Remaining questions In Part II of this work, we investigate the affect of re-
laxing the constant-volume assumption as well as various configurations of reactor
networks.

Reactor networks are interesting because by passing partially combusted mix-
tures into a WSR, it is allowed to operate at Damköhler numbers well below the
blowoff limit, where new dynamic phenomena can occur. Moreover, they also can
include infinite-order affects from recirculation.

Relaxing the constraint on volume is physically motivated since most flames are
not dynamically constrained volumes. It is of great interest since it also generates
entirely new dynamic phenomena and can be shown to bring new prominence to
the low-frequency mixing dynamics.
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Appendix A

Derivation of Governing Equations

From a more rudimentary starting point, the equations governing the accumulation
of mass, species, and energy in a well mixed tank are

d

dt
(ρ)V = ṁ0 − ṁ (43)

d

dt
(ρYi)V = ṁ0Yi,0 − ṁYi +Mζi (44)

d

dt
(ρe)V = ṁ0e0 − ṁe+ u0A0p0 − uAp. (45)

Here, V is the reactor volume, M is the mass in the reactor (M = ρV ), and e is
the fluid internal energy. For this appendix only, subscripts containing 0 indicate
properties at the reactor inlet, and are otherwise assumed to be the properties inside
the reactor. Momentum is absent since the reactor pressure is not being modeled.

First, consider the energy equation. Recognizing that h = e+ p/ρ, Equation 45
can be rewritten as

d

dt
(ρh)V − ṗV = ṁ0h0 − ṁh. (46)

Now, if the time derivative on the left-hand-side of Equations 44 and 46 are
distributed and the density derivatives are eliminated by substituting Equation 43,
we are left with

ẎiM + ṁ0 (Yi − Yi,0) = Mζi (47)

ḣM + ṁ0 (h− h0) =
1

ρ

dp

dt
. (48)

Again, since the pressure in the reactor is assumed to be both steady and irrelevant
to the model, the last term of the energy equation can be neglected. Since the
residence time can be defined by τr = M/ṁ0, the equations simplify to

Ẏi + τr
−1 (Yi − Yi,0) = ζi (49)

ḣ+ τr
−1 (h− h0) = 0. (50)

Note that the reaction rate still does not appear in the energy equation. We
make it appear by writing the mixture’s enthalpy in terms of its constituent species,
h =

∑

i Yihi, and substituting it to get

cpṪ +
∑

i

Ẏi hi + τr
−1

(

∑

i

Yi,0 hi,0 −
∑

i

Yi hi

)

= 0 (51)

Finally, substituting Equation 49 to eliminate the time derivatives on Y ,

cpṪ + τr
−1
∑

i

Yi,0 (hi − hi,0) = −
∑

i

hiζi (52)
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Appendix B

Eccentricities for various fuels

Though the values of ĉ and β depend on the precise temperature and composition,
a reasonable idea of the orders of magnitude involved may be drawn from their val-
ues under complete stoichiometric combustion at the adiabatic flame temperature.
Thus, using the JANAF tables, wherein cp = cp(T,Y), we may compute stoichio-
metric values for ĉ and β when Yinlet is a stoichiometric air-fuel mixture and the
product mixture is given by

Y = Yinlet + VYf,inlet/Vf .

Finally, the stoichiometric, adiabatic values for ĉ and β are given by

ĉ =
cp(Tad,Yinlet) − cp(Tad,Y)

cp(Tad,Yinlet)
β =

h(Tad,Yinlet) − h(Tad,Y)

cp(Tad,Y)(Tad − Tinlet)
.

Table 4 shows ĉ and β for various common gaseous fuels with an inlet temper-
ature of 300K. The remarkable similarity between fuels is destroyed if we consider
non-complete combustion or vary the inlet temperature. Methane can even be made
to exhibit a negative ĉ.

In general, however, β remains relatively close to 1 and ĉ remains quite close
to 0. This is due to the fact that the reacting species only constitute a small
fraction (even at stoichiometric conditions) of the fluid. As the incoming mixture
becomes further and further from stoichiometric (rich or lean), the reacting species
will constitute an even smaller fraction of the mixture and the eccentricities will be
on an even smaller order of magnitude. The stoichiometric case is, in fact, the most
eccentric case.

Table 4: Eccentricities for various fuels under stoichiometric, adiabatic combustion,
with Tinlet = 300K

Fuel Symb. ĉ β
Hydrogen H2 0.012 0.950
Methane CH4 0.016 0.873
Ethane C2H6 0.010 0.873
Propane C3H8 0.011 0.874
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