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Abstract—Optimal power flow has been solved to show possible
effects of solar variability and location of solar systems on
electricity price using the IEEE 30 Bus Test system. Different
densities of simulated solar generation plants were used, with
higher-density plants exhibiting higher variability of generation.
The effects of different solar variability conditions tested in this
study were found to be minimal on the absolute reduction in
local marginal prices (LMPs), but low-density plant distributions
exhibited smaller and less frequent fluctuations in the price. In
some cases, solar generation was observed to reduce the LMP to
zero, resulting from congestion that limited the export of elec-
tricity. We observed that lower-density generation distributions
could reduce the frequency of these rapid price fluctuations. The
location of solar systems within the grid can also have a significant
impact on LMPs. When solar generation is installed at a high
demand bus, the LMP typically decreased at both the local and
neighboring buses. When the solar systems are installed at a low
demand bus, the LMPs were observed to increase or decrease
depending on the demand and congestion. This work highlights
the importance of the effects of solar system location on LMP.

Index Terms—solar, photovoltaics, variability, spatial aggrega-
tion, wavelet variability model, locational marginal price, LMP,
demand

I. INTRODUCTION

Renewable energy generation, including solar photovoltaics
(PV), naturally exhibits a higher degree of variability than
traditional sources of generation and is naturally spatially
distributed throughout the generation environment. The dis-
tributed nature of PV generation poses technical and economic
challenges that must be overcome to enable higher levels
of renewable penetration onto the electrical grid. Besides
technical challenges, it is important to understand the role that
distributed solar PV may play in driving electricity prices in
the marketplace. Both solar variability and distribution may
be expected to play a role in determining the electricity price.

An important electricity metric in the energy market is
hourly wholesale price, known as the Locational Marginal
Price (LMP). LMP is the marginal cost of transferring an
incremental unit of energy from one network location to an-
other location in the network. The price can change according
to the balance between supply and demand, and congestion.
A review of literature shows numerous studies conducted to
analyze the effect of solar systems on LMP. For example,
Schwabe et al. [1] made a comparison among average prices
of electricity based on the combination of empirically derived
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energy generation from two photovoltaic systems and LMPs
for two regions. Hemmati et al. demonstrated the impacts of
renewable energy on flow-gate marginal pricing and LMPs
using an IEEE six bus test system [2]. Albadi et al. created
two scenarios; one large solar project and small geograph-
ically dispersed solar projects in Oman, and investigated the
implications on transmission losses and LMPs [3]. Mohammad
et al. considered the social welfare maximization problem of
Independent System Operators (ISOs), and proposed a new
decomposition for LMP after analyzing the effect of renewable
energy systems on LMPs [4]. Jin et al. [5] created a model of
LMP-based partition optimal economic dispatch with wind and
photovoltaic systems that provide 42% of the total generation
capacity of the test system.

However, existing studies did not account for the effects
of how the distribution of generation with respect to solar
variability impacts electricity pricing. This study analyzes
these effects on electricity pricing by solving optimal power
flow with MATPOWER for the IEEE 30 Bus Test Case.
LMPs were obtained for solar systems connected to the grid
considering two different generation distribution density (i.e.
variability) conditions. Then, we evaluated how the solar
system deployment density and its location within the test bus
affects the LMPs.

II. METHODOLOGY
A. Variability Modeling

A major component of the variability inherent to solar
generation is induced by cloud motion across a distributed
generation facility [6]. Previous studies have described the
inverse relationship between the density of the generation
plant’s spatial distribution and the variability of the output:
that is, generation spread over a smaller spatial extent exhibits
a higher degree of variability than generation spread out over a
broader geographic area [7]. As variability of generation may
be expected to drive short term electricity prices, we may
expect that high- and low-density distribution of generation
will have differing impacts on the electricity price.

A region representing a single node of the IEEE network
model was approximated as covering a geographic range of 10
km x 10 km. A total of 30 MW of generation were modeled
as a generator, feeding into the node. Two different generation
cases were considered: one large 30 MW plant and one



Fig. 1. Sample plant layout. In both cases, 21 MW of total rated capacity
are modeled.

thousand small 30 kW plants. A spatial density of 41 MW per
acre was used to determine the geographic size of these plants.
Thus, the 30 MW plant resulted in a high-density concentrated
generation facility, while the 1000 smaller plants resulted in
a low-density distribution within the overall area. The plants
were randomly centered within the given geographic area and
built out to the necessary size to match the capacity scale
desired. A sample random layout is in Fig. 1.

In order to model the differences in spatiotemporal vari-
ability between the loosely- and densely-distributed PV gen-
eration, we utilized the Wavelet Variability Model (WVM) [8]
as implemented in PVLIB Python [9]. The WVM represents
how the variability in the irradiance time series measured at
a single point is smoothed out due to a spatially distributed
plant. It does so via selective reduction in the magnitude of
wavelet mode amplitudes as a function of wavelet timescale.
Short timescales (higher frequencies) are reduced the most,
while longer (low frequency) timescales retain their amplitude.
The degree to which each wavelet mode’s amplitude is scaled
down is determined by the modeled time series correlation
between spatially disparate portions of the site; a greater
spatial separation leads to more significant smoothing of the
time series.

We used individual days from the SURFRAD database [10]
as representative reference global horizontal irradiance (GHI)
time series. These reference (i.e. point measurement) time
series were taken for the SURFRAD site PSU, located in
central Pennsylvania. Data were considered for the entire year
of 2019, and several representative clear, cloudy and variable
days were manually identified and were compared on the basis
of common variability metrics [11]: Variability Score (VS)
[12], Variability Index (VI) [13] and Daily Aggregate Ramp
Rate (DARR) [14]. In the case of all of these metrics, a higher
value corresponds to more variability. Values for these metrics
for the reference days considered are given in Table I. As is
evident, both clear and cloudy days exhibited low values of the
variability as compared to the variable days. While the level
of variability between the clear and cloudy days was similarly
low, they are differentiated by the cloudy days exhibiting a
much lower mean value clear-sky index (k).

In order to compute the simulated electricity generation
from the high- and low-density distributed plants, the irra-

TABLE I
VARIABILITY METRICS FOR 2019 REF. DAYS FROM SURFRAD - PSU

Category Date Day of Yr  Mean k. VS VI DARR
Clear Mar 23 082 1.07 0.07 1.20 214.7
Clear Mar 26 085 1.11 0.07 1.04 179.2

Cloudy Mar 01 060 0.31 0.04  1.06 152.2
Cloudy  Mar 21 080 0.16 0.04 1.03 161.9
Variable ~ Apr 20 110 0.88 1.45 2146 57064
Variable  Jun 14 165 0.86 2.13  30.03 8093.5

Fig. 2. Sample WVM output time series smoothed by the two different plant
layouts for a variable day, Apr 20, 2019. Input in each case is a 1 minute
resolution time series from SURFRAD.

diance time series were used as an input measurement to the
WVM, which provides a prediction of the smoothed irradiance
over the aggregate plant. The output of the low-density plant
would be expected to have lower variability (smoother time
series) than the high-density plant modeled in this study. Com-
parisons of high- and low-density plant irradiance time series
are shown in Fig. 2. It is evident that the low-density plant case
exhibits reduced magnitude of fluctuations in the irradiance.
The frequency dependence of the variability reduction can be
seen by considering the magnitude of transfer function for
each case relative to the input, as shown in Fig. 3.

As this model represents a hypothetical plant and we are
principally concerned with how differences in the variability
affect the electricity price, we represented the relationship
between irradiance and plant electrical output as a simple
scaling operation. Aggregate irradiance time series from the
WVM were normalized such that a computed irradiance of
1000 W/m? was assumed to produce electrical power at the
rated capacity (30 MW) of the overall plant, as specified in
Section II-A.

B. Optimization

The effects of solar variability and location of solar systems
on electric prices were investigated through solving optimal
power flow (OPF) using the IEEE 30 Bus Test in MAT-
POWER, an open source MATLAB simulation package [15].

OPF determines the best operating levels of the generators
at the lowest cost, considering any operational limits of



Fig. 3. Sample WVM output transfer functions for the two plant distributions
demonstrating the frequency dependence of the variability reduction for a
variable day, Apr 20, 2019. Several common timescales are labeled on the
frequency axis.

generation and transmission facilities. The process of OPF is:

min|f(z)] (D
Subject to the following conditions:
g(z) =0 2
h(z) <0 3)
Tmin < T < Tmas “4)

The objective function f(x) consists of the polynomial
cost of generator injections. The equality constraints g(x) are
the real and reactive power balance equations. The inequality
constraints h(x) consist of two sets of n; branch flow limits as
nonlinear functions of the bus voltage angles and magnitudes,
one for the from end and one for the fo end of each branch.The
variable limits Z,,;, and Z,,q, include an equality constraint
on any reference bus angle and upper and lower limits on
all bus voltage magnitudes and real and reactive generator
injections [16].

The IEEE 30 Bus Test Case, from December, 1961, repre-
sents data collected in the Midwestern US by the American
Electric Power System [17]. The MATPOPWER package has
the IEEE 30 bus test case with some modifications: the data
was taken from Alsac et al. [18] with branch parameters
rounded to the nearest 0.01, shunt values divided by 100, and
the shunt on bus 10 moved to bus 5, with the load at bus 5
zeroed out. Generator locations, costs and limits and bus areas
were taken from Ferrero at al. [19]. Generator Q limits were
derived from [18], using their Pmax capacities. V limits and
line limits were taken from [18]. The IEEE 30 case is shown
with line limits, demand for each bus and generators in Figure
4.

The OPF was first run for the IEEE 30 bus system without
any solar systems to create a LMP baseline. Then, solar
systems were added to the system as a generator for each
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Fig. 4. IEEE 30 bus system test case. The red G in the circle shows the
generators, while the grey numbers in the rectangle show the demand values,
and the dark blue numbers show the line limits

TABLE 11
SOLAR TEST BUS PLACEMENT DETAILS
Bus Number

Demand (MW)  Neighbour Buses

20 2.2 Bus 10, Bus 19
29 2.4 Bus 27, Bus 30
14 6.2 Bus 12, Bus 15
30 10.6 Bus 27, Bus 29
8 30 Bus 6, Bus 28

of the clear, cloudy, and variable days considering high- and
low-density plant distribution scenarios. The OPF was run
accordingly for each scenario. Bus demand was considered
when choosing which buses to add the PV systems to. Five
buses were chosen to represent different levels of demand.
These five buses and the associated demand for each bus are
shown in Table II. LMPs at these five buses and their neighbor
buses were obtained and analyzed for each scenario.

The results were compiled on a comparative basis, relative
to the baseline LMP with no solar generation. In order to do
this, a percent difference range was determined for each five
buses, based on the LMPs with- and without- a solar system.
Equation 5 was used for this calculation.

LMP,,;
LM Pyiz;(%) = ((LMPththt) - 1) x 100%  (5)

For all these scenarios, the variables in MATPOWER were
modified to include real power generation (Pg), imaginary
power generation (Qg), max real power (Pmax), min real
power (Pmin), max imaginary power (Qmax), min imaginary
power (Qmin), and generation costs.



It was assumed that PV systems produce power proportional
to irradiance, based upon their rated capacities, as stated
previously. The minimum real power value for PV systems
was assumed to be zero. PV systems do not produce reactive
power, but inverters may be used for this purpose. In the
literature, the maximum reactive power has been assumed to
be 1/3 of maximum real power [20] and minimum reactive
power is the negative of the maximum reactive power value.
These assumptions were also used in this study. Finally, the
generation costs for the PV systems were set to zero since
those would be paid from the initial cost of the PV systems,
with no ongoing fuel costs.

III. RESULTS AND DISCUSSION

The 30 MW solar system was first placed at bus 29 and
LMP changes at this bus were analyzed with high- and low-
density generation distributions for the three different days
(clear, cloudy, and variable). The total generation on the bus
for these days is around 190 MW. With 30 MW rated capacity
from PV systems, this results in PV penetration of around
15%. On a clear day, March 26, the LMP price at bus 29 was
$3.96/MWh for the base case scenario (i.e. no solar system)
and decreased to a range of $3.94/MWh to $3.34/MWh when
high-density solar case was added, as shown in Figure 5a.
Similar results were observed for the low-density case as well.
This translates into a 1 to 15% overall decrease in the range
of LMPs for low- and high-density cases. On a cloudy day,
March 21, the LMP decrease was very small regardless of
the solar generation density, a decrease corresponding a range
from 1 to 1.9%, as seen in Figure 5b. The results indicate
that there is no significant difference between the high- and
low-density solar cases analyzed in this study during clear and
cloudy days. This makes sense, as the relatively low variability
of these days leads to only small differences caused by the
distribution of solar generation.

However, a different pattern of LMP changes is observed
during a variable day, June 14. The LMP exhibits significant
differences between the high- and low-density cases, as in
Figure 5c. Overall, there is a pattern of solar causing a slight
reduction in the LMP. However, multiple times the LMP
fluctuates from the reduced value to zero and back in a very
short time span. We attribute this to congestion on enough
neighboring lines to result in no pathway for the electricity
to be exported, and thus a price of zero is reached. These
zero-price conditions occur rapidly, and repeatedly, and are
observed more often for the high-density distribution of solar.
The LMP values become zero for approximately 114 minutes
of the day (8%) and 45 minutes (3%) for high- and low-
density distributions, respectively. In addition, even when LMP
is not zero, it experiences a higher degree of fluctuation than
that seen in the low-density distribution case. This shows
that accounting for the effect of solar distribution (variable
day scenario) on LMPs is very important, since these sudden
changes of price may give market participants misleading price
signals. The low-density distribution of solar reduces the risk
of these sudden changes in price and mitigates the price risk.

Fig. 5. LMPs at bus 29 in a clear, cloudy and variable day when solar system
is placed at bus 29.

Fig. 6. Variable day LMPs at bus 6, 8, and 28 when solar system is placed
at bus 8 with high-density and low-density.

In order to further investigate how LMP changes at neigh-
boring buses to the solar system, we analyzed high- and low-
density distribution plants on a variable day for each of the bus
cases presented in Table II. The results are shown in Figures
6 to 10. Overall, LMP decreases at most buses for both low-
and high-density distributions with a relatively lower minimum
price in the high-density case. However, the price experiences
a lower degree of fluctuation for the low-density case. This is
consistent with the lower variability of the low-density case
due to additional smoothing of the time series.

The amount of decrease in price at the bus where solar
system is placed is greater than the decrease seen for the
neighboring buses. This is because the solar generation would
be used first by the local bus, with the surplus sent to other
buses. For example, demand at bus 14 (Fig. 7) is 6.20 MW and
all the demand can be supplied from the solar system, such that
some is exported to neighboring buses. In this case, the LMP



Fig. 7. Variable day LMPs at bus 12, 14, and 15 when solar system is placed
at bus 14 with high-density and low-density.

Fig. 8. Variable day LMPs at bus 10, 19, and 20 when solar system is placed
at bus 20 with high-density and low-density.

decreases around 14% for bus 14 and 9% for buses 12 and
15. All the LMPs percent changes from maximum decrease
to maximum increase for each case is tabulated in Table III.
Negative numbers indicate a decrease in LMPs, while positive
numbers an increase. Placing a solar system in the IEEE test
case results in LMP decrease from 3% to 100% depending on
the buses.

While installation of solar systems generally results in a
reduction in LMP on neighboring buses, it can be seen that
LMP may increase with solar system penetration at some buses
in other parts of the grid. For example, when the solar system
was added to bus 20, the LMP decreases around 13% for bus
20 with respect to the base case, but increases around 7% for
bus 8, as seen in Figure 11. The demand for bus 20 is 2.2 MW
and the solar system produces much more than this demand.
Thus, the rest of the energy produced is sent to other buses.
This causes congestion on the line between bus 6 and bus 8§,

Fig. 9. Variable day LMPs at bus 27, 29, and 30 when solar system is placed
at bus 29 with high-density and low-density.

Fig. 10. Variable day LMPs at bus 27, 29, and 30 when solar system is placed
at bus 30 with high-density and low-density.

which leads to higher LMP at bus 8. The results indicate how
LMPs change with respect to where solar systems are placed
alongside the demand conditions and further investigation is
needed to analyze the effect of solar generation on congestion
with different cases.

IV. CONCLUSION

Solar generation has an impact on LMPs, and the extent of
this impact is affected by many factors. In this study, the ef-
fects of solar generation distribution density (and concurrently
variability of generation) and bus location of solar systems
on LMPs were investigated. This objective was achieved by
solving the optimal power flow using the IEEE 30 Bus Test
system in MATPOWER. The results show the effects of
different solar variability conditions tested in this study are
similar on LMPs during clear and cloudy days. However, solar
distribution density (i.e. variability) has significant effect on



TABLE III
MAXIMUM LMP PERCENT INCREASE OR DECREASE(%) FOR EACH BUS LOCATION AND NEIGHBORS.

Bus 6 Bus 8 Bus 28
Max. | Max. T Max. | Max. T Max. ] Max. T
Solar System at Bus 8 High Density -4.410 1.989 -32.971 0.049 -12.088  0.011
Low Density  -3.881 1.993 -32.571 0.048 -11.619  0.011
Bus 12 Bus 14 Bus 15
Max. | Max. T Max. | Max. T Max. ] Max. T
Solar System at Bus 14 High Density  -9.329 0.001 -14.414 0.002 -9.222 0.001
Low Density  -8.596 0.001 -13.372 0.001 -8.504 0.001
Bus 10 Bus 19 Bus 20
Max. ] Max. T Max. | Max. T Max. ] Max.T
Solar System at Bus 20 High Density  -9.263 0.003 -12.567 0.001 -13.135  0.002
Low Density  -8.532 0.004 -11.628 0.001 -12.160  0.002
Bus 27 Bus 29 Bus 30
Max. | Max. 1 Max. | Max. T Max. ] Max. T
Solar System at Bus 29 High Density  -10.098  0.000 -100.000  0.000 -61.842  0.001
) Low Density  -10.092  0.000 -100.000  0.000 -61.842  0.001
Bus 27 Bus 29 Bus 30
Max. | Max. 1 Max. | Max. T Max. ] Max. T
Solar System at Bus 30 High Density -12.507  0.000 -17.289 0.000 -23.755  0.001
‘ ) Low Density  -11.466  0.000 -15.879 0.000 -17.631  -2.084

Fig. 11. LMPs at bus 8 when solar system is placed at bus 20 with high-
density and low-density in a clear, cloudy and variable day.

LMPs during a variable day. The results also show that the
LMP decreases for the buses in which the solar system is
added and for the neighbour buses.Such decrease ranges from
3% to 100%. Cases with 100% reduction appear to result from
high levels of congestion preventing the export of power. It
was observed that low-density solar plant distributions reduce
the occurrence of these zero-price conditions by smoothing
out the variability in the generation time series.

It was also observed that when a solar system is added to a
low demand bus (e.g. bus 20), the LMP decreased for the low
demand bus, but it increased for high demand buses (e.g.bus
8). This results from the local surplus solar generation being
sent to other buses, which can result in congestion and thus,
increase in LMP. This clearly indicates the effects of solar

system location on LMPs. The results from this study can be
used for informed planning and decision-making process for
solar system installation. Additional work is needed to further
investigate the effects of solar variability on LMPs by more
comprehensively placing solar system at each bus, considering
a more complete set of daily irradiance conditions days and
varying solar penetration levels.
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